Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297687907> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4297687907 abstract "We propose a dimensionality reduction method for infinite-dimensional measure-valued evolution equations such as the Fokker-Planck partial differential equation or the Kushner-Stratonovich resp. Duncan-Mortensen-Zakai stochastic partial differential equations of nonlinear filtering, with potential applications to signal processing, quantitative finance, heat flows and quantum theory among many other areas. Our method is based on the projection coming from a duality argument built in the exponential statistical manifold structure developed by G. Pistone and co-authors. The choice of the finite dimensional manifold on which one should project the infinite dimensional equation is crucial, and we propose finite dimensional exponential and mixture families. This same problem had been studied, especially in the context of nonlinear filtering, by D. Brigo and co-authors but the $L^2$ structure on the space of square roots of densities or of densities themselves was used, without taking an infinite dimensional manifold environment space for the equation to be projected. Here we re-examine such works from the exponential statistical manifold point of view, which allows for a deeper geometric understanding of the manifold structures at play. We also show that the projection in the exponential manifold structure is consistent with the Fisher Rao metric and, in case of finite dimensional exponential families, with the assumed density approximation. Further, we show that if the sufficient statistics of the finite dimensional exponential family are chosen among the eigenfunctions of the backward diffusion operator then the statistical-manifold or Fisher-Rao projection provides the maximum likelihood estimator for the Fokker Planck equation solution. We finally try to clarify how the finite dimensional and infinite dimensional terminology for exponential and mixture spaces are related." @default.
- W4297687907 created "2022-09-30" @default.
- W4297687907 creator A5005254246 @default.
- W4297687907 creator A5074786556 @default.
- W4297687907 date "2016-01-16" @default.
- W4297687907 modified "2023-09-30" @default.
- W4297687907 title "Projection based dimensionality reduction for measure valued evolution equations in statistical manifolds" @default.
- W4297687907 doi "https://doi.org/10.48550/arxiv.1601.04189" @default.
- W4297687907 hasPublicationYear "2016" @default.
- W4297687907 type Work @default.
- W4297687907 citedByCount "0" @default.
- W4297687907 crossrefType "posted-content" @default.
- W4297687907 hasAuthorship W4297687907A5005254246 @default.
- W4297687907 hasAuthorship W4297687907A5074786556 @default.
- W4297687907 hasBestOaLocation W42976879071 @default.
- W4297687907 hasConcept C109546454 @default.
- W4297687907 hasConcept C11413529 @default.
- W4297687907 hasConcept C12520029 @default.
- W4297687907 hasConcept C127413603 @default.
- W4297687907 hasConcept C134306372 @default.
- W4297687907 hasConcept C154945302 @default.
- W4297687907 hasConcept C169391604 @default.
- W4297687907 hasConcept C195065555 @default.
- W4297687907 hasConcept C2524010 @default.
- W4297687907 hasConcept C28826006 @default.
- W4297687907 hasConcept C33923547 @default.
- W4297687907 hasConcept C41008148 @default.
- W4297687907 hasConcept C529865628 @default.
- W4297687907 hasConcept C55974624 @default.
- W4297687907 hasConcept C57493831 @default.
- W4297687907 hasConcept C70518039 @default.
- W4297687907 hasConcept C78519656 @default.
- W4297687907 hasConcept C93779851 @default.
- W4297687907 hasConceptScore W4297687907C109546454 @default.
- W4297687907 hasConceptScore W4297687907C11413529 @default.
- W4297687907 hasConceptScore W4297687907C12520029 @default.
- W4297687907 hasConceptScore W4297687907C127413603 @default.
- W4297687907 hasConceptScore W4297687907C134306372 @default.
- W4297687907 hasConceptScore W4297687907C154945302 @default.
- W4297687907 hasConceptScore W4297687907C169391604 @default.
- W4297687907 hasConceptScore W4297687907C195065555 @default.
- W4297687907 hasConceptScore W4297687907C2524010 @default.
- W4297687907 hasConceptScore W4297687907C28826006 @default.
- W4297687907 hasConceptScore W4297687907C33923547 @default.
- W4297687907 hasConceptScore W4297687907C41008148 @default.
- W4297687907 hasConceptScore W4297687907C529865628 @default.
- W4297687907 hasConceptScore W4297687907C55974624 @default.
- W4297687907 hasConceptScore W4297687907C57493831 @default.
- W4297687907 hasConceptScore W4297687907C70518039 @default.
- W4297687907 hasConceptScore W4297687907C78519656 @default.
- W4297687907 hasConceptScore W4297687907C93779851 @default.
- W4297687907 hasLocation W42976879071 @default.
- W4297687907 hasOpenAccess W4297687907 @default.
- W4297687907 hasPrimaryLocation W42976879071 @default.
- W4297687907 hasRelatedWork W1673255417 @default.
- W4297687907 hasRelatedWork W2058157079 @default.
- W4297687907 hasRelatedWork W2136902267 @default.
- W4297687907 hasRelatedWork W2209834891 @default.
- W4297687907 hasRelatedWork W2391721128 @default.
- W4297687907 hasRelatedWork W2927231406 @default.
- W4297687907 hasRelatedWork W3159542909 @default.
- W4297687907 hasRelatedWork W3161217785 @default.
- W4297687907 hasRelatedWork W3186525817 @default.
- W4297687907 hasRelatedWork W4297986345 @default.
- W4297687907 isParatext "false" @default.
- W4297687907 isRetracted "false" @default.
- W4297687907 workType "article" @default.