Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297786249> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W4297786249 abstract "Room Temperature Semiconductor Detectors (RTSD) (e.g., CdZnTe and CdZnTeSe) have been recently proposed in novel space, homeland security and medical applications, which provide sub-millimeter position information of interacting γ-rays and excellent spectroscopic performance. These detectors have been constructed using a large variety of anode configurations. The virtual Frisch-grid concept with reduced readout channels has been proposed recently. To fully utilize the potential of RTSD, advanced single-polarity charge sensing reconstruction algorithms are needed. Energy and position of interaction reconstruction algorithms rely on physics-based models, with Principal Component Analysis being introduced recently. Proposed deep learning (DL) techniques have the potential to perform event reconstruction with improved position information and better energy resolution than conventional non-DL methods. In this paper, we present a novel DL approach based on Convolutional Neural Networks (CNN) for identifying the energy deposition and position of interaction of the γ-rays within the RTSD. The network is trained with input-output data pairs. The input data consists of signals at the electrodes corresponding to each incident event and the output data the position and energy spectrum of those events. Our network consists of 5 stages of convolutional layers, each followed by a batch normalization layer and a max-pooling layer. These layers extract features from the input signals fed to the model. This is followed by 2 stages of fully connected layers. Our model outputs the interaction positions and energies within the RTSD. The model is trained using gradient descent steps using the backpropagation method in Tensorflow library of Python. The network has been tested with unseen signals. The Root Mean Squared Error (RMSE) for test cases were around 1% or less for both position and energy interactions." @default.
- W4297786249 created "2022-10-01" @default.
- W4297786249 creator A5011928112 @default.
- W4297786249 creator A5048650003 @default.
- W4297786249 creator A5057599971 @default.
- W4297786249 creator A5078417967 @default.
- W4297786249 date "2021-10-16" @default.
- W4297786249 modified "2023-09-26" @default.
- W4297786249 title "Event Reconstruction in Radiation Detectors using Convolutional Neural Networks" @default.
- W4297786249 doi "https://doi.org/10.1109/nss/mic44867.2021.9875945" @default.
- W4297786249 hasPublicationYear "2021" @default.
- W4297786249 type Work @default.
- W4297786249 citedByCount "0" @default.
- W4297786249 crossrefType "proceedings-article" @default.
- W4297786249 hasAuthorship W4297786249A5011928112 @default.
- W4297786249 hasAuthorship W4297786249A5048650003 @default.
- W4297786249 hasAuthorship W4297786249A5057599971 @default.
- W4297786249 hasAuthorship W4297786249A5078417967 @default.
- W4297786249 hasConcept C108583219 @default.
- W4297786249 hasConcept C153180895 @default.
- W4297786249 hasConcept C154945302 @default.
- W4297786249 hasConcept C155032097 @default.
- W4297786249 hasConcept C206688291 @default.
- W4297786249 hasConcept C41008148 @default.
- W4297786249 hasConcept C50644808 @default.
- W4297786249 hasConcept C76155785 @default.
- W4297786249 hasConcept C81363708 @default.
- W4297786249 hasConcept C94915269 @default.
- W4297786249 hasConceptScore W4297786249C108583219 @default.
- W4297786249 hasConceptScore W4297786249C153180895 @default.
- W4297786249 hasConceptScore W4297786249C154945302 @default.
- W4297786249 hasConceptScore W4297786249C155032097 @default.
- W4297786249 hasConceptScore W4297786249C206688291 @default.
- W4297786249 hasConceptScore W4297786249C41008148 @default.
- W4297786249 hasConceptScore W4297786249C50644808 @default.
- W4297786249 hasConceptScore W4297786249C76155785 @default.
- W4297786249 hasConceptScore W4297786249C81363708 @default.
- W4297786249 hasConceptScore W4297786249C94915269 @default.
- W4297786249 hasLocation W42977862491 @default.
- W4297786249 hasOpenAccess W4297786249 @default.
- W4297786249 hasPrimaryLocation W42977862491 @default.
- W4297786249 hasRelatedWork W2480330148 @default.
- W4297786249 hasRelatedWork W2731899572 @default.
- W4297786249 hasRelatedWork W2732542196 @default.
- W4297786249 hasRelatedWork W2738221750 @default.
- W4297786249 hasRelatedWork W2883041339 @default.
- W4297786249 hasRelatedWork W3156786002 @default.
- W4297786249 hasRelatedWork W4312417841 @default.
- W4297786249 hasRelatedWork W4321369474 @default.
- W4297786249 hasRelatedWork W4321439147 @default.
- W4297786249 hasRelatedWork W564581980 @default.
- W4297786249 isParatext "false" @default.
- W4297786249 isRetracted "false" @default.
- W4297786249 workType "article" @default.