Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297797551> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4297797551 abstract "The finite element method, finite difference method, finite volume method and spectral method have achieved great success in solving partial differential equations. However, the high accuracy of traditional numerical methods is at the cost of high efficiency. Especially in the face of high-dimensional problems, the traditional numerical methods are often not feasible in the subdivision of high-dimensional meshes and the differentiability and integrability of high-order terms. In deep learning, neural network can deal with high-dimensional problems by adding the number of layers or expanding the number of neurons. Compared with traditional numerical methods, it has great advantages. In this article, we consider the Deep Galerkin Method (DGM) for solving the general Stokes equations by using deep neural network without generating mesh grid. The DGM can reduce the computational complexity and achieve the competitive results. Here, depending on the L2 error we construct the objective function to control the performance of the approximation solution. Then, we prove the convergence of the objective function and the convergence of the neural network to the exact solution. Finally, the effectiveness of the proposed framework is demonstrated through some numerical experiments." @default.
- W4297797551 created "2022-10-01" @default.
- W4297797551 creator A5023933852 @default.
- W4297797551 creator A5052883326 @default.
- W4297797551 creator A5053269101 @default.
- W4297797551 creator A5078949281 @default.
- W4297797551 date "2020-09-17" @default.
- W4297797551 modified "2023-09-26" @default.
- W4297797551 title "The Deep Learning Galerkin Method for the General Stokes Equations" @default.
- W4297797551 doi "https://doi.org/10.48550/arxiv.2009.11701" @default.
- W4297797551 hasPublicationYear "2020" @default.
- W4297797551 type Work @default.
- W4297797551 citedByCount "0" @default.
- W4297797551 crossrefType "posted-content" @default.
- W4297797551 hasAuthorship W4297797551A5023933852 @default.
- W4297797551 hasAuthorship W4297797551A5052883326 @default.
- W4297797551 hasAuthorship W4297797551A5053269101 @default.
- W4297797551 hasAuthorship W4297797551A5078949281 @default.
- W4297797551 hasBestOaLocation W42977975511 @default.
- W4297797551 hasConcept C108583219 @default.
- W4297797551 hasConcept C11413529 @default.
- W4297797551 hasConcept C121332964 @default.
- W4297797551 hasConcept C126255220 @default.
- W4297797551 hasConcept C134306372 @default.
- W4297797551 hasConcept C135628077 @default.
- W4297797551 hasConcept C154945302 @default.
- W4297797551 hasConcept C162324750 @default.
- W4297797551 hasConcept C186899397 @default.
- W4297797551 hasConcept C2524010 @default.
- W4297797551 hasConcept C2777303404 @default.
- W4297797551 hasConcept C28826006 @default.
- W4297797551 hasConcept C31487907 @default.
- W4297797551 hasConcept C33923547 @default.
- W4297797551 hasConcept C41008148 @default.
- W4297797551 hasConcept C48753275 @default.
- W4297797551 hasConcept C50522688 @default.
- W4297797551 hasConcept C50644808 @default.
- W4297797551 hasConcept C92244383 @default.
- W4297797551 hasConcept C93779851 @default.
- W4297797551 hasConcept C97355855 @default.
- W4297797551 hasConceptScore W4297797551C108583219 @default.
- W4297797551 hasConceptScore W4297797551C11413529 @default.
- W4297797551 hasConceptScore W4297797551C121332964 @default.
- W4297797551 hasConceptScore W4297797551C126255220 @default.
- W4297797551 hasConceptScore W4297797551C134306372 @default.
- W4297797551 hasConceptScore W4297797551C135628077 @default.
- W4297797551 hasConceptScore W4297797551C154945302 @default.
- W4297797551 hasConceptScore W4297797551C162324750 @default.
- W4297797551 hasConceptScore W4297797551C186899397 @default.
- W4297797551 hasConceptScore W4297797551C2524010 @default.
- W4297797551 hasConceptScore W4297797551C2777303404 @default.
- W4297797551 hasConceptScore W4297797551C28826006 @default.
- W4297797551 hasConceptScore W4297797551C31487907 @default.
- W4297797551 hasConceptScore W4297797551C33923547 @default.
- W4297797551 hasConceptScore W4297797551C41008148 @default.
- W4297797551 hasConceptScore W4297797551C48753275 @default.
- W4297797551 hasConceptScore W4297797551C50522688 @default.
- W4297797551 hasConceptScore W4297797551C50644808 @default.
- W4297797551 hasConceptScore W4297797551C92244383 @default.
- W4297797551 hasConceptScore W4297797551C93779851 @default.
- W4297797551 hasConceptScore W4297797551C97355855 @default.
- W4297797551 hasLocation W42977975511 @default.
- W4297797551 hasOpenAccess W4297797551 @default.
- W4297797551 hasPrimaryLocation W42977975511 @default.
- W4297797551 hasRelatedWork W1534562927 @default.
- W4297797551 hasRelatedWork W2011039224 @default.
- W4297797551 hasRelatedWork W2950902343 @default.
- W4297797551 hasRelatedWork W2953671098 @default.
- W4297797551 hasRelatedWork W3032262642 @default.
- W4297797551 hasRelatedWork W3035243708 @default.
- W4297797551 hasRelatedWork W3092754077 @default.
- W4297797551 hasRelatedWork W3123659167 @default.
- W4297797551 hasRelatedWork W3153950707 @default.
- W4297797551 hasRelatedWork W949925081 @default.
- W4297797551 isParatext "false" @default.
- W4297797551 isRetracted "false" @default.
- W4297797551 workType "article" @default.