Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297798981> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4297798981 abstract "Given a bridgeless graph $G$, the Cycle Double Cover Conjecture posits that there is a list of cycles of $G$, such that every edge appears in exactly two cycles on the list. This conjecture was originally posed independently in 1973 by Szekeres and 1979 by Seymour. In 1985, Jaeger demonstrated that it is sufficient to prove in the case that $G$ is a cubic graph. We here present a proof that every bridgeless cubic graph has a cycle double cover by analyzing certain kinds of cycles in the line graph of $G$. Further, in the case that $G$ is cubic, we prove the stronger conjecture that given a bridgeless graph $G$ and a cycle $C$ in $G$, then there exists a cycle double cover of $G$ containing $C$." @default.
- W4297798981 created "2022-10-01" @default.
- W4297798981 creator A5002256198 @default.
- W4297798981 date "2015-10-07" @default.
- W4297798981 modified "2023-09-30" @default.
- W4297798981 title "A proof of the Cycle Double Cover Conjecture" @default.
- W4297798981 doi "https://doi.org/10.48550/arxiv.1510.02075" @default.
- W4297798981 hasPublicationYear "2015" @default.
- W4297798981 type Work @default.
- W4297798981 citedByCount "0" @default.
- W4297798981 crossrefType "posted-content" @default.
- W4297798981 hasAuthorship W4297798981A5002256198 @default.
- W4297798981 hasBestOaLocation W42977989811 @default.
- W4297798981 hasConcept C100500283 @default.
- W4297798981 hasConcept C114614502 @default.
- W4297798981 hasConcept C118615104 @default.
- W4297798981 hasConcept C127413603 @default.
- W4297798981 hasConcept C132525143 @default.
- W4297798981 hasConcept C140752511 @default.
- W4297798981 hasConcept C149530733 @default.
- W4297798981 hasConcept C203776342 @default.
- W4297798981 hasConcept C22149727 @default.
- W4297798981 hasConcept C2780428219 @default.
- W4297798981 hasConcept C2780990831 @default.
- W4297798981 hasConcept C28093856 @default.
- W4297798981 hasConcept C33923547 @default.
- W4297798981 hasConcept C78519656 @default.
- W4297798981 hasConceptScore W4297798981C100500283 @default.
- W4297798981 hasConceptScore W4297798981C114614502 @default.
- W4297798981 hasConceptScore W4297798981C118615104 @default.
- W4297798981 hasConceptScore W4297798981C127413603 @default.
- W4297798981 hasConceptScore W4297798981C132525143 @default.
- W4297798981 hasConceptScore W4297798981C140752511 @default.
- W4297798981 hasConceptScore W4297798981C149530733 @default.
- W4297798981 hasConceptScore W4297798981C203776342 @default.
- W4297798981 hasConceptScore W4297798981C22149727 @default.
- W4297798981 hasConceptScore W4297798981C2780428219 @default.
- W4297798981 hasConceptScore W4297798981C2780990831 @default.
- W4297798981 hasConceptScore W4297798981C28093856 @default.
- W4297798981 hasConceptScore W4297798981C33923547 @default.
- W4297798981 hasConceptScore W4297798981C78519656 @default.
- W4297798981 hasLocation W42977989811 @default.
- W4297798981 hasOpenAccess W4297798981 @default.
- W4297798981 hasPrimaryLocation W42977989811 @default.
- W4297798981 hasRelatedWork W1857095195 @default.
- W4297798981 hasRelatedWork W2017277785 @default.
- W4297798981 hasRelatedWork W2032821182 @default.
- W4297798981 hasRelatedWork W2054216620 @default.
- W4297798981 hasRelatedWork W2075297411 @default.
- W4297798981 hasRelatedWork W2123831997 @default.
- W4297798981 hasRelatedWork W2179924962 @default.
- W4297798981 hasRelatedWork W3025479648 @default.
- W4297798981 hasRelatedWork W4286893871 @default.
- W4297798981 hasRelatedWork W4297798981 @default.
- W4297798981 isParatext "false" @default.
- W4297798981 isRetracted "false" @default.
- W4297798981 workType "article" @default.