Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297799080> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4297799080 abstract "Random forests have proven to be reliable predictive algorithms in many application areas. Not much is known, however, about the statistical properties of random forests. Several authors have established conditions under which their predictions are consistent, but these results do not provide practical estimates of random forest errors. In this paper, we analyze a random forest model based on subsampling, and show that random forest predictions are asymptotically normal provided that the subsample size s scales as s(n)/n = o(log(n)^{-d}), where n is the number of training examples and d is the number of features. Moreover, we show that the asymptotic variance can consistently be estimated using an infinitesimal jackknife for bagged ensembles recently proposed by Efron (2014). In other words, our results let us both characterize and estimate the error-distribution of random forest predictions, thus taking a step towards making random forests tools for statistical inference instead of just black-box predictive algorithms." @default.
- W4297799080 created "2022-10-01" @default.
- W4297799080 creator A5089493027 @default.
- W4297799080 date "2014-05-02" @default.
- W4297799080 modified "2023-09-30" @default.
- W4297799080 title "Asymptotic Theory for Random Forests" @default.
- W4297799080 doi "https://doi.org/10.48550/arxiv.1405.0352" @default.
- W4297799080 hasPublicationYear "2014" @default.
- W4297799080 type Work @default.
- W4297799080 citedByCount "0" @default.
- W4297799080 crossrefType "posted-content" @default.
- W4297799080 hasAuthorship W4297799080A5089493027 @default.
- W4297799080 hasBestOaLocation W42977990801 @default.
- W4297799080 hasConcept C105795698 @default.
- W4297799080 hasConcept C11413529 @default.
- W4297799080 hasConcept C121955636 @default.
- W4297799080 hasConcept C134261354 @default.
- W4297799080 hasConcept C144133560 @default.
- W4297799080 hasConcept C154945302 @default.
- W4297799080 hasConcept C169258074 @default.
- W4297799080 hasConcept C185429906 @default.
- W4297799080 hasConcept C196083921 @default.
- W4297799080 hasConcept C2776214188 @default.
- W4297799080 hasConcept C33923547 @default.
- W4297799080 hasConcept C41008148 @default.
- W4297799080 hasConcept C81790035 @default.
- W4297799080 hasConceptScore W4297799080C105795698 @default.
- W4297799080 hasConceptScore W4297799080C11413529 @default.
- W4297799080 hasConceptScore W4297799080C121955636 @default.
- W4297799080 hasConceptScore W4297799080C134261354 @default.
- W4297799080 hasConceptScore W4297799080C144133560 @default.
- W4297799080 hasConceptScore W4297799080C154945302 @default.
- W4297799080 hasConceptScore W4297799080C169258074 @default.
- W4297799080 hasConceptScore W4297799080C185429906 @default.
- W4297799080 hasConceptScore W4297799080C196083921 @default.
- W4297799080 hasConceptScore W4297799080C2776214188 @default.
- W4297799080 hasConceptScore W4297799080C33923547 @default.
- W4297799080 hasConceptScore W4297799080C41008148 @default.
- W4297799080 hasConceptScore W4297799080C81790035 @default.
- W4297799080 hasLocation W42977990801 @default.
- W4297799080 hasOpenAccess W4297799080 @default.
- W4297799080 hasPrimaryLocation W42977990801 @default.
- W4297799080 hasRelatedWork W2027753564 @default.
- W4297799080 hasRelatedWork W2036267395 @default.
- W4297799080 hasRelatedWork W2049174225 @default.
- W4297799080 hasRelatedWork W2068980905 @default.
- W4297799080 hasRelatedWork W2139809776 @default.
- W4297799080 hasRelatedWork W2356054774 @default.
- W4297799080 hasRelatedWork W2357858658 @default.
- W4297799080 hasRelatedWork W2742844528 @default.
- W4297799080 hasRelatedWork W3042658731 @default.
- W4297799080 hasRelatedWork W2173022174 @default.
- W4297799080 isParatext "false" @default.
- W4297799080 isRetracted "false" @default.
- W4297799080 workType "article" @default.