Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297811474> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4297811474 abstract "Advanced machine learning techniques have been used in remote sensing (RS) applications such as crop mapping and yield prediction, but remain under-utilized for tracking crop progress. In this study, we demonstrate the use of agronomic knowledge of crop growth drivers in a Long Short-Term Memory-based, domain-guided neural network (DgNN) for in-season crop progress estimation. The DgNN uses a branched structure and attention to separate independent crop growth drivers and capture their varying importance throughout the growing season. The DgNN is implemented for corn, using RS data in Iowa for the period 2003-2019, with USDA crop progress reports used as ground truth. State-wide DgNN performance shows significant improvement over sequential and dense-only NN structures, and a widely-used Hidden Markov Model method. The DgNN had a 4.0% higher Nash-Sutfliffe efficiency over all growth stages and 39% more weeks with highest cosine similarity than the next best NN during test years. The DgNN and Sequential NN were more robust during periods of abnormal crop progress, though estimating the Silking-Grainfill transition was difficult for all methods. Finally, Uniform Manifold Approximation and Projection visualizations of layer activations showed how LSTM-based NNs separate crop growth time-series differently from a dense-only structure. Results from this study exhibit both the viability of NNs in crop growth stage estimation (CGSE) and the benefits of using domain knowledge. The DgNN methodology presented here can be extended to provide near-real time CGSE of other crops." @default.
- W4297811474 created "2022-10-01" @default.
- W4297811474 creator A5005550534 @default.
- W4297811474 creator A5052979611 @default.
- W4297811474 creator A5059870257 @default.
- W4297811474 date "2021-06-24" @default.
- W4297811474 modified "2023-09-30" @default.
- W4297811474 title "Domain-guided Machine Learning for Remotely Sensed In-Season Crop Growth Estimation" @default.
- W4297811474 doi "https://doi.org/10.48550/arxiv.2106.13323" @default.
- W4297811474 hasPublicationYear "2021" @default.
- W4297811474 type Work @default.
- W4297811474 citedByCount "0" @default.
- W4297811474 crossrefType "posted-content" @default.
- W4297811474 hasAuthorship W4297811474A5005550534 @default.
- W4297811474 hasAuthorship W4297811474A5052979611 @default.
- W4297811474 hasAuthorship W4297811474A5059870257 @default.
- W4297811474 hasBestOaLocation W42978114741 @default.
- W4297811474 hasConcept C108583219 @default.
- W4297811474 hasConcept C119857082 @default.
- W4297811474 hasConcept C126343540 @default.
- W4297811474 hasConcept C127413603 @default.
- W4297811474 hasConcept C134306372 @default.
- W4297811474 hasConcept C137580998 @default.
- W4297811474 hasConcept C137660486 @default.
- W4297811474 hasConcept C146849305 @default.
- W4297811474 hasConcept C153180895 @default.
- W4297811474 hasConcept C154945302 @default.
- W4297811474 hasConcept C201995342 @default.
- W4297811474 hasConcept C207685749 @default.
- W4297811474 hasConcept C33923547 @default.
- W4297811474 hasConcept C36503486 @default.
- W4297811474 hasConcept C41008148 @default.
- W4297811474 hasConcept C50644808 @default.
- W4297811474 hasConcept C6557445 @default.
- W4297811474 hasConcept C86803240 @default.
- W4297811474 hasConcept C88463610 @default.
- W4297811474 hasConcept C96250715 @default.
- W4297811474 hasConceptScore W4297811474C108583219 @default.
- W4297811474 hasConceptScore W4297811474C119857082 @default.
- W4297811474 hasConceptScore W4297811474C126343540 @default.
- W4297811474 hasConceptScore W4297811474C127413603 @default.
- W4297811474 hasConceptScore W4297811474C134306372 @default.
- W4297811474 hasConceptScore W4297811474C137580998 @default.
- W4297811474 hasConceptScore W4297811474C137660486 @default.
- W4297811474 hasConceptScore W4297811474C146849305 @default.
- W4297811474 hasConceptScore W4297811474C153180895 @default.
- W4297811474 hasConceptScore W4297811474C154945302 @default.
- W4297811474 hasConceptScore W4297811474C201995342 @default.
- W4297811474 hasConceptScore W4297811474C207685749 @default.
- W4297811474 hasConceptScore W4297811474C33923547 @default.
- W4297811474 hasConceptScore W4297811474C36503486 @default.
- W4297811474 hasConceptScore W4297811474C41008148 @default.
- W4297811474 hasConceptScore W4297811474C50644808 @default.
- W4297811474 hasConceptScore W4297811474C6557445 @default.
- W4297811474 hasConceptScore W4297811474C86803240 @default.
- W4297811474 hasConceptScore W4297811474C88463610 @default.
- W4297811474 hasConceptScore W4297811474C96250715 @default.
- W4297811474 hasLocation W42978114741 @default.
- W4297811474 hasOpenAccess W4297811474 @default.
- W4297811474 hasPrimaryLocation W42978114741 @default.
- W4297811474 hasRelatedWork W3014300295 @default.
- W4297811474 hasRelatedWork W4200211221 @default.
- W4297811474 hasRelatedWork W4223943233 @default.
- W4297811474 hasRelatedWork W4225161397 @default.
- W4297811474 hasRelatedWork W4252617674 @default.
- W4297811474 hasRelatedWork W4309045103 @default.
- W4297811474 hasRelatedWork W4312200629 @default.
- W4297811474 hasRelatedWork W4312946710 @default.
- W4297811474 hasRelatedWork W4360585206 @default.
- W4297811474 hasRelatedWork W4364306694 @default.
- W4297811474 isParatext "false" @default.
- W4297811474 isRetracted "false" @default.
- W4297811474 workType "article" @default.