Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297820416> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4297820416 endingPage "102290" @default.
- W4297820416 startingPage "102290" @default.
- W4297820416 abstract "From the perspective of aquaculture systems, a grouper is bred in a high-density manner which can cause stronger contagion and a higher risk of infection. In addition to routine inspections, identifying the abnormal appearance or condition of the underwater fish in advanced via computational intelligence and taking further isolation measures will help reduce the chance of infection of other fish. This paper introduces a two-phase ImageNet pre-trained deep learning model with Convolutional Neural Network (CNN) structure which is able to classify three types of the abnormal appearance of grouper. The dataset contains 7700 underwater fish images and 11 classes, including nine common Taiwan high-economic-value fish species and the grouper with the normal and abnormal appearance. The experiment implements four ImageNet pre-trained models and validates with empirical image data. The experimental result reveals InceptionV3 pre-trained model for classifying three different types of abnormal appearance of grouper can reach average 98.94% accuracy in phase II task." @default.
- W4297820416 created "2022-10-01" @default.
- W4297820416 creator A5033695556 @default.
- W4297820416 creator A5035308256 @default.
- W4297820416 creator A5054898122 @default.
- W4297820416 creator A5074583144 @default.
- W4297820416 date "2022-11-01" @default.
- W4297820416 modified "2023-10-16" @default.
- W4297820416 title "Underwater abnormal classification system based on deep learning: A case study on aquaculture fish farm in Taiwan" @default.
- W4297820416 cites W1185880853 @default.
- W4297820416 cites W2065581824 @default.
- W4297820416 cites W2161712216 @default.
- W4297820416 cites W2347112165 @default.
- W4297820416 cites W2470368200 @default.
- W4297820416 cites W2484375177 @default.
- W4297820416 cites W2512334330 @default.
- W4297820416 cites W2522256182 @default.
- W4297820416 cites W2565831893 @default.
- W4297820416 cites W2578363764 @default.
- W4297820416 cites W2593797095 @default.
- W4297820416 cites W2621132470 @default.
- W4297820416 cites W2790284570 @default.
- W4297820416 cites W2790979755 @default.
- W4297820416 cites W2960550590 @default.
- W4297820416 cites W2964298670 @default.
- W4297820416 cites W2966160658 @default.
- W4297820416 cites W2980420732 @default.
- W4297820416 cites W2996753878 @default.
- W4297820416 cites W3001975036 @default.
- W4297820416 cites W3003900166 @default.
- W4297820416 cites W3035052333 @default.
- W4297820416 cites W3082843304 @default.
- W4297820416 doi "https://doi.org/10.1016/j.aquaeng.2022.102290" @default.
- W4297820416 hasPublicationYear "2022" @default.
- W4297820416 type Work @default.
- W4297820416 citedByCount "2" @default.
- W4297820416 countsByYear W42978204162023 @default.
- W4297820416 crossrefType "journal-article" @default.
- W4297820416 hasAuthorship W4297820416A5033695556 @default.
- W4297820416 hasAuthorship W4297820416A5035308256 @default.
- W4297820416 hasAuthorship W4297820416A5054898122 @default.
- W4297820416 hasAuthorship W4297820416A5074583144 @default.
- W4297820416 hasConcept C119857082 @default.
- W4297820416 hasConcept C153180895 @default.
- W4297820416 hasConcept C154945302 @default.
- W4297820416 hasConcept C166957645 @default.
- W4297820416 hasConcept C205649164 @default.
- W4297820416 hasConcept C2778967481 @default.
- W4297820416 hasConcept C2909208804 @default.
- W4297820416 hasConcept C41008148 @default.
- W4297820416 hasConcept C505870484 @default.
- W4297820416 hasConcept C50644808 @default.
- W4297820416 hasConcept C81363708 @default.
- W4297820416 hasConcept C86803240 @default.
- W4297820416 hasConcept C86909935 @default.
- W4297820416 hasConcept C98083399 @default.
- W4297820416 hasConceptScore W4297820416C119857082 @default.
- W4297820416 hasConceptScore W4297820416C153180895 @default.
- W4297820416 hasConceptScore W4297820416C154945302 @default.
- W4297820416 hasConceptScore W4297820416C166957645 @default.
- W4297820416 hasConceptScore W4297820416C205649164 @default.
- W4297820416 hasConceptScore W4297820416C2778967481 @default.
- W4297820416 hasConceptScore W4297820416C2909208804 @default.
- W4297820416 hasConceptScore W4297820416C41008148 @default.
- W4297820416 hasConceptScore W4297820416C505870484 @default.
- W4297820416 hasConceptScore W4297820416C50644808 @default.
- W4297820416 hasConceptScore W4297820416C81363708 @default.
- W4297820416 hasConceptScore W4297820416C86803240 @default.
- W4297820416 hasConceptScore W4297820416C86909935 @default.
- W4297820416 hasConceptScore W4297820416C98083399 @default.
- W4297820416 hasLocation W42978204161 @default.
- W4297820416 hasOpenAccess W4297820416 @default.
- W4297820416 hasPrimaryLocation W42978204161 @default.
- W4297820416 hasRelatedWork W1574623885 @default.
- W4297820416 hasRelatedWork W2611945597 @default.
- W4297820416 hasRelatedWork W2791295854 @default.
- W4297820416 hasRelatedWork W2950353183 @default.
- W4297820416 hasRelatedWork W2968807533 @default.
- W4297820416 hasRelatedWork W3093612317 @default.
- W4297820416 hasRelatedWork W392706666 @default.
- W4297820416 hasRelatedWork W4287776258 @default.
- W4297820416 hasRelatedWork W57010150 @default.
- W4297820416 hasRelatedWork W583997120 @default.
- W4297820416 hasVolume "99" @default.
- W4297820416 isParatext "false" @default.
- W4297820416 isRetracted "false" @default.
- W4297820416 workType "article" @default.