Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297831295> ?p ?o ?g. }
- W4297831295 endingPage "23" @default.
- W4297831295 startingPage "1" @default.
- W4297831295 abstract "Abstract Cyberbullying is the wilful and repeated infliction of harm on an individual using the Internet and digital technologies. Similar to face-to-face bullying, cyberbullying can be captured formally using the Routine Activities Model (RAM) whereby the potential victim and bully are brought into proximity of one another via the interaction on online social networking (OSN) platforms. Although the impact of the COVID-19 (SARS-CoV-2) restrictions on the online presence of minors has yet to be fully grasped, studies have reported that 44% of pre-adolescents have encountered more cyberbullying incidents during the COVID-19 lockdown. Transparency reports shared by OSN companies indicate an increased take-downs of cyberbullying-related comments, posts or content by artificially intelligen moderation tools. However, in order to efficiently and effectively detect or identify whether a social media post or comment qualifies as cyberbullying, there are a number factors based on the RAM, which must be taken into account, which includes the identification of cyberbullying roles and forms. This demands the acquisition of large amounts of fine-grained annotated data which is costly and ethically challenging to produce. In addition where fine-grained datasets do exist they may be unavailable in the target language. Manual translation is costly and expensive, however, state-of-the-art neural machine translation offers a workaround. This study presents a first of its kind experiment in leveraging machine translation to automatically translate a unique pre-adolescent cyberbullying gold standard dataset in Italian with fine-grained annotations into English for training and testing a native binary classifier for pre-adolescent cyberbullying. In addition to contributing high-quality English reference translation of the source gold standard, our experiments indicate that the performance of our target binary classifier when trained on machine-translated English output is on par with the source (Italian) classifier." @default.
- W4297831295 created "2022-10-01" @default.
- W4297831295 creator A5032717913 @default.
- W4297831295 creator A5033858406 @default.
- W4297831295 creator A5039008974 @default.
- W4297831295 creator A5042771326 @default.
- W4297831295 creator A5044870584 @default.
- W4297831295 creator A5045306408 @default.
- W4297831295 creator A5047569834 @default.
- W4297831295 creator A5064395265 @default.
- W4297831295 date "2022-09-07" @default.
- W4297831295 modified "2023-10-10" @default.
- W4297831295 title "Leveraging machine translation for cross-lingual fine-grained cyberbullying classification amongst pre-adolescents" @default.
- W4297831295 cites W1902237438 @default.
- W4297831295 cites W2002121299 @default.
- W4297831295 cites W2016527577 @default.
- W4297831295 cites W2017489100 @default.
- W4297831295 cites W2024218234 @default.
- W4297831295 cites W2029553347 @default.
- W4297831295 cites W2034757259 @default.
- W4297831295 cites W2061504941 @default.
- W4297831295 cites W2064576795 @default.
- W4297831295 cites W2101105183 @default.
- W4297831295 cites W2142423963 @default.
- W4297831295 cites W2146277089 @default.
- W4297831295 cites W2157331557 @default.
- W4297831295 cites W2216854803 @default.
- W4297831295 cites W224940491 @default.
- W4297831295 cites W2250342921 @default.
- W4297831295 cites W2282644932 @default.
- W4297831295 cites W2402268235 @default.
- W4297831295 cites W2416164492 @default.
- W4297831295 cites W2473056847 @default.
- W4297831295 cites W2527053096 @default.
- W4297831295 cites W2529427724 @default.
- W4297831295 cites W2557321300 @default.
- W4297831295 cites W2622801600 @default.
- W4297831295 cites W2762029282 @default.
- W4297831295 cites W2763662250 @default.
- W4297831295 cites W2784010253 @default.
- W4297831295 cites W2787597018 @default.
- W4297831295 cites W2791184775 @default.
- W4297831295 cites W2805807672 @default.
- W4297831295 cites W2808861903 @default.
- W4297831295 cites W2904937466 @default.
- W4297831295 cites W2907419877 @default.
- W4297831295 cites W2936832793 @default.
- W4297831295 cites W2962784628 @default.
- W4297831295 cites W2963506925 @default.
- W4297831295 cites W2972943150 @default.
- W4297831295 cites W2978215122 @default.
- W4297831295 cites W2979826702 @default.
- W4297831295 cites W2981921704 @default.
- W4297831295 cites W2981977471 @default.
- W4297831295 cites W3005484809 @default.
- W4297831295 cites W3014487746 @default.
- W4297831295 cites W3100038031 @default.
- W4297831295 cites W3113414489 @default.
- W4297831295 cites W3126184898 @default.
- W4297831295 cites W3130523865 @default.
- W4297831295 cites W3133318941 @default.
- W4297831295 cites W3159201688 @default.
- W4297831295 cites W3162367619 @default.
- W4297831295 cites W3213848376 @default.
- W4297831295 cites W4255164308 @default.
- W4297831295 cites W4294214983 @default.
- W4297831295 doi "https://doi.org/10.1017/s1351324922000341" @default.
- W4297831295 hasPublicationYear "2022" @default.
- W4297831295 type Work @default.
- W4297831295 citedByCount "1" @default.
- W4297831295 crossrefType "journal-article" @default.
- W4297831295 hasAuthorship W4297831295A5032717913 @default.
- W4297831295 hasAuthorship W4297831295A5033858406 @default.
- W4297831295 hasAuthorship W4297831295A5039008974 @default.
- W4297831295 hasAuthorship W4297831295A5042771326 @default.
- W4297831295 hasAuthorship W4297831295A5044870584 @default.
- W4297831295 hasAuthorship W4297831295A5045306408 @default.
- W4297831295 hasAuthorship W4297831295A5047569834 @default.
- W4297831295 hasAuthorship W4297831295A5064395265 @default.
- W4297831295 hasBestOaLocation W42978312951 @default.
- W4297831295 hasConcept C108827166 @default.
- W4297831295 hasConcept C116834253 @default.
- W4297831295 hasConcept C119857082 @default.
- W4297831295 hasConcept C136764020 @default.
- W4297831295 hasConcept C154945302 @default.
- W4297831295 hasConcept C15744967 @default.
- W4297831295 hasConcept C194541083 @default.
- W4297831295 hasConcept C199360897 @default.
- W4297831295 hasConcept C203005215 @default.
- W4297831295 hasConcept C2777363581 @default.
- W4297831295 hasConcept C2780233690 @default.
- W4297831295 hasConcept C2985487447 @default.
- W4297831295 hasConcept C38652104 @default.
- W4297831295 hasConcept C41008148 @default.
- W4297831295 hasConcept C518677369 @default.
- W4297831295 hasConcept C59822182 @default.
- W4297831295 hasConcept C77805123 @default.
- W4297831295 hasConcept C86803240 @default.