Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297842543> ?p ?o ?g. }
- W4297842543 endingPage "352" @default.
- W4297842543 startingPage "343" @default.
- W4297842543 abstract "In current practice, the seismic design of reinforced concrete shear walls primarily relies on the wall shear strength as well as proper reinforcement detailing to ensure sufficient ductility. However, experimental results have shown that the seismic (input) demands are met by the energy dissipation capacity in the structural members; therefore, the influence of hysteretic behavior on seismic behavior is considerable. An energy-based approach that reflects the effect of repeated loads in seismic performance – which is typically neglected in the seismic codes – would serve as a supplemental index in the design process. With this motivation, a predictive model is proposed to estimate the energy dissipation capacity of reinforced concrete shear walls. A comprehensive database consisting of 312 shear walls tested under cyclic loading and a widely used and powerful machine learning method, namely Gaussian Process Regression (GPR), is used to investigate the effects of wall design parameters (e.g. wall geometry, reinforcement details) on energy dissipation capacity and to develop the predictive model as a function of such parameters. Eighteen design parameters are shown to influence the energy dissipation, the most important of which are identified by applying sequential backward elimination and feature selection methods. The ability of the proposed model to make robust and accurate predictions is validated based on unused data with a prediction accuracy (the ratio of predicted/actual values) of around 1.00 and a coefficient of determination (R2) of 0.93. The outcomes of this study are believed to contribute to the wall design process by (i) defining the most influential wall properties on the seismic energy dissipation capacity of shear walls and (ii) providing predictive models that can enable comparisons of different wall design configurations to achieve higher energy dissipation capacity." @default.
- W4297842543 created "2022-10-01" @default.
- W4297842543 creator A5017374089 @default.
- W4297842543 creator A5025384373 @default.
- W4297842543 creator A5059509622 @default.
- W4297842543 creator A5059892574 @default.
- W4297842543 date "2022-11-01" @default.
- W4297842543 modified "2023-09-30" @default.
- W4297842543 title "Machine learning-based estimation of energy dissipation capacity of RC shear walls" @default.
- W4297842543 cites W1970162507 @default.
- W4297842543 cites W1979393914 @default.
- W4297842543 cites W1982513649 @default.
- W4297842543 cites W1992332428 @default.
- W4297842543 cites W1998426462 @default.
- W4297842543 cites W2003351311 @default.
- W4297842543 cites W2012980216 @default.
- W4297842543 cites W2021824307 @default.
- W4297842543 cites W2030589370 @default.
- W4297842543 cites W2033324360 @default.
- W4297842543 cites W2047523485 @default.
- W4297842543 cites W2048265032 @default.
- W4297842543 cites W2052578367 @default.
- W4297842543 cites W2052925787 @default.
- W4297842543 cites W2059358994 @default.
- W4297842543 cites W2078258892 @default.
- W4297842543 cites W2081297088 @default.
- W4297842543 cites W2082845493 @default.
- W4297842543 cites W2085055003 @default.
- W4297842543 cites W2089399027 @default.
- W4297842543 cites W2092396175 @default.
- W4297842543 cites W2109759398 @default.
- W4297842543 cites W2133990480 @default.
- W4297842543 cites W2139786505 @default.
- W4297842543 cites W2156320181 @default.
- W4297842543 cites W2156803103 @default.
- W4297842543 cites W2775484290 @default.
- W4297842543 cites W2782753316 @default.
- W4297842543 cites W2788697198 @default.
- W4297842543 cites W2799581210 @default.
- W4297842543 cites W2966994172 @default.
- W4297842543 cites W2978151602 @default.
- W4297842543 cites W2981442271 @default.
- W4297842543 cites W3006597564 @default.
- W4297842543 cites W4210414471 @default.
- W4297842543 cites W815093329 @default.
- W4297842543 doi "https://doi.org/10.1016/j.istruc.2022.08.114" @default.
- W4297842543 hasPublicationYear "2022" @default.
- W4297842543 type Work @default.
- W4297842543 citedByCount "4" @default.
- W4297842543 countsByYear W42978425432022 @default.
- W4297842543 countsByYear W42978425432023 @default.
- W4297842543 crossrefType "journal-article" @default.
- W4297842543 hasAuthorship W4297842543A5017374089 @default.
- W4297842543 hasAuthorship W4297842543A5025384373 @default.
- W4297842543 hasAuthorship W4297842543A5059509622 @default.
- W4297842543 hasAuthorship W4297842543A5059892574 @default.
- W4297842543 hasBestOaLocation W42978425432 @default.
- W4297842543 hasConcept C105795698 @default.
- W4297842543 hasConcept C111919701 @default.
- W4297842543 hasConcept C119857082 @default.
- W4297842543 hasConcept C121332964 @default.
- W4297842543 hasConcept C127313418 @default.
- W4297842543 hasConcept C127413603 @default.
- W4297842543 hasConcept C135402231 @default.
- W4297842543 hasConcept C149912024 @default.
- W4297842543 hasConcept C159985019 @default.
- W4297842543 hasConcept C163716315 @default.
- W4297842543 hasConcept C170901245 @default.
- W4297842543 hasConcept C182358397 @default.
- W4297842543 hasConcept C186370098 @default.
- W4297842543 hasConcept C187320778 @default.
- W4297842543 hasConcept C192562407 @default.
- W4297842543 hasConcept C2776512210 @default.
- W4297842543 hasConcept C33923547 @default.
- W4297842543 hasConcept C41008148 @default.
- W4297842543 hasConcept C5900021 @default.
- W4297842543 hasConcept C61326573 @default.
- W4297842543 hasConcept C62520636 @default.
- W4297842543 hasConcept C66938386 @default.
- W4297842543 hasConcept C81692654 @default.
- W4297842543 hasConcept C96035792 @default.
- W4297842543 hasConcept C97355855 @default.
- W4297842543 hasConcept C98045186 @default.
- W4297842543 hasConceptScore W4297842543C105795698 @default.
- W4297842543 hasConceptScore W4297842543C111919701 @default.
- W4297842543 hasConceptScore W4297842543C119857082 @default.
- W4297842543 hasConceptScore W4297842543C121332964 @default.
- W4297842543 hasConceptScore W4297842543C127313418 @default.
- W4297842543 hasConceptScore W4297842543C127413603 @default.
- W4297842543 hasConceptScore W4297842543C135402231 @default.
- W4297842543 hasConceptScore W4297842543C149912024 @default.
- W4297842543 hasConceptScore W4297842543C159985019 @default.
- W4297842543 hasConceptScore W4297842543C163716315 @default.
- W4297842543 hasConceptScore W4297842543C170901245 @default.
- W4297842543 hasConceptScore W4297842543C182358397 @default.
- W4297842543 hasConceptScore W4297842543C186370098 @default.
- W4297842543 hasConceptScore W4297842543C187320778 @default.
- W4297842543 hasConceptScore W4297842543C192562407 @default.