Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297846935> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4297846935 abstract "This study proposed a deep learning-based tracking method for ultrasound (US) image-guided radiation therapy. The proposed cascade deep learning model is composed of an attention network, a mask region-based convolutional neural network (mask R-CNN), and a long short-term memory (LSTM) network. The attention network learns a mapping from a US image to a suspected area of landmark motion in order to reduce the search region. The mask R-CNN then produces multiple region-of-interest (ROI) proposals in the reduced region and identifies the proposed landmark via three network heads: bounding box regression, proposal classification, and landmark segmentation. The LSTM network models the temporal relationship among the successive image frames for bounding box regression and proposal classification. To consolidate the final proposal, a selection method is designed according to the similarities between sequential frames. The proposed method was tested on the liver US tracking datasets used in the Medical Image Computing and Computer Assisted Interventions (MICCAI) 2015 challenges, where the landmarks were annotated by three experienced observers to obtain their mean positions. Five-fold cross-validation on the 24 given US sequences with ground truths shows that the mean tracking error for all landmarks is 0.65+/-0.56 mm, and the errors of all landmarks are within 2 mm. We further tested the proposed model on 69 landmarks from the testing dataset that has a similar image pattern to the training pattern, resulting in a mean tracking error of 0.94+/-0.83 mm. Our experimental results have demonstrated the feasibility and accuracy of our proposed method in tracking liver anatomic landmarks using US images, providing a potential solution for real-time liver tracking for active motion management during radiation therapy." @default.
- W4297846935 created "2022-10-01" @default.
- W4297846935 creator A5005105786 @default.
- W4297846935 creator A5024852113 @default.
- W4297846935 creator A5029173262 @default.
- W4297846935 creator A5030054597 @default.
- W4297846935 creator A5033510051 @default.
- W4297846935 creator A5050909682 @default.
- W4297846935 creator A5052639870 @default.
- W4297846935 creator A5079240749 @default.
- W4297846935 creator A5085918263 @default.
- W4297846935 date "2022-09-14" @default.
- W4297846935 modified "2023-09-25" @default.
- W4297846935 title "Landmark Tracking in Liver US images Using Cascade Convolutional Neural Networks with Long Short-Term Memory" @default.
- W4297846935 doi "https://doi.org/10.48550/arxiv.2209.06952" @default.
- W4297846935 hasPublicationYear "2022" @default.
- W4297846935 type Work @default.
- W4297846935 citedByCount "0" @default.
- W4297846935 crossrefType "posted-content" @default.
- W4297846935 hasAuthorship W4297846935A5005105786 @default.
- W4297846935 hasAuthorship W4297846935A5024852113 @default.
- W4297846935 hasAuthorship W4297846935A5029173262 @default.
- W4297846935 hasAuthorship W4297846935A5030054597 @default.
- W4297846935 hasAuthorship W4297846935A5033510051 @default.
- W4297846935 hasAuthorship W4297846935A5050909682 @default.
- W4297846935 hasAuthorship W4297846935A5052639870 @default.
- W4297846935 hasAuthorship W4297846935A5079240749 @default.
- W4297846935 hasAuthorship W4297846935A5085918263 @default.
- W4297846935 hasBestOaLocation W42978469351 @default.
- W4297846935 hasConcept C108583219 @default.
- W4297846935 hasConcept C115961682 @default.
- W4297846935 hasConcept C147037132 @default.
- W4297846935 hasConcept C153180895 @default.
- W4297846935 hasConcept C154945302 @default.
- W4297846935 hasConcept C2780297707 @default.
- W4297846935 hasConcept C31972630 @default.
- W4297846935 hasConcept C41008148 @default.
- W4297846935 hasConcept C50644808 @default.
- W4297846935 hasConcept C63584917 @default.
- W4297846935 hasConcept C81363708 @default.
- W4297846935 hasConcept C89600930 @default.
- W4297846935 hasConceptScore W4297846935C108583219 @default.
- W4297846935 hasConceptScore W4297846935C115961682 @default.
- W4297846935 hasConceptScore W4297846935C147037132 @default.
- W4297846935 hasConceptScore W4297846935C153180895 @default.
- W4297846935 hasConceptScore W4297846935C154945302 @default.
- W4297846935 hasConceptScore W4297846935C2780297707 @default.
- W4297846935 hasConceptScore W4297846935C31972630 @default.
- W4297846935 hasConceptScore W4297846935C41008148 @default.
- W4297846935 hasConceptScore W4297846935C50644808 @default.
- W4297846935 hasConceptScore W4297846935C63584917 @default.
- W4297846935 hasConceptScore W4297846935C81363708 @default.
- W4297846935 hasConceptScore W4297846935C89600930 @default.
- W4297846935 hasLocation W42978469351 @default.
- W4297846935 hasOpenAccess W4297846935 @default.
- W4297846935 hasPrimaryLocation W42978469351 @default.
- W4297846935 hasRelatedWork W2082098299 @default.
- W4297846935 hasRelatedWork W2369744843 @default.
- W4297846935 hasRelatedWork W2724710774 @default.
- W4297846935 hasRelatedWork W2769769732 @default.
- W4297846935 hasRelatedWork W3082683741 @default.
- W4297846935 hasRelatedWork W3102253946 @default.
- W4297846935 hasRelatedWork W3144574764 @default.
- W4297846935 hasRelatedWork W4224223242 @default.
- W4297846935 hasRelatedWork W4226289457 @default.
- W4297846935 hasRelatedWork W3090693157 @default.
- W4297846935 isParatext "false" @default.
- W4297846935 isRetracted "false" @default.
- W4297846935 workType "article" @default.