Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297876574> ?p ?o ?g. }
- W4297876574 abstract "Abstract Poor irrigation water quality can mar agricultural productivity. Appraising the irrigation water quality requires the computation of various conventional quality parameters which are often time-consuming and associated with errors during sub-index computation. It becomes critical therefore, to have a visual assessment of the irrigation water quality and identify the most influential water quality parameters for accurate prediction, management, and sustainability of irrigation water quality. The overlay weighted sum technique was used to generate the irrigation water quality (IWQ) map of the area. The map revealed that 72.5% of the area (within the southeastern parts) were suitable for irrigation while 28.4% (found in isolated traces) were unsuitable. Multilayer perceptron artificial neural networks (MLP-ANNs) and multiple linear regression models (MLR) were integrated and validated to predict the IWQ parameters using Cl − , HCO 3 − SO 4 2− , NO 3 − , Ca 2+ , Mg 2+ , Na + , K + , pH, EC, TH and TDS as input variables, and PI, MAR, SAR, PI, KR, SSP, and PS as output variables. The two models showed high performance accuracy based on the results of the coefficient of determination ( R 2 = 0.513–0.983). Low modeling errors were observed from results of the sum of square errors (SOSE), relative errors (RE), adjusted R-square ( R 2 adj ), and residual plots; further confirming the efficacy of the two models, although the MLP-ANNs showed higher prediction accuracy with respect to R 2 . Based on the sensitivity of the MLP-ANN model, HCO 3 , pH, SO 4 , EC, and Cl were identified to have the greatest influence on the irrigation water quality of the area. This study has shown that the integration of GIS and Machine Learning can serve as rapid decision tools for proper planning and enhanced agricultural productivity." @default.
- W4297876574 created "2022-10-01" @default.
- W4297876574 creator A5058642197 @default.
- W4297876574 date "2022-09-21" @default.
- W4297876574 modified "2023-10-14" @default.
- W4297876574 title "Evaluation and prediction of irrigation water quality of an agricultural district, SE Nigeria: an integrated heuristic GIS-based and machine learning approach" @default.
- W4297876574 cites W1568560596 @default.
- W4297876574 cites W1973448477 @default.
- W4297876574 cites W1974362687 @default.
- W4297876574 cites W2012232061 @default.
- W4297876574 cites W2043243353 @default.
- W4297876574 cites W2054185858 @default.
- W4297876574 cites W2060063654 @default.
- W4297876574 cites W2090091295 @default.
- W4297876574 cites W2092289770 @default.
- W4297876574 cites W2092449075 @default.
- W4297876574 cites W2183709880 @default.
- W4297876574 cites W2288227404 @default.
- W4297876574 cites W2773213923 @default.
- W4297876574 cites W2783181589 @default.
- W4297876574 cites W2793338318 @default.
- W4297876574 cites W2800604825 @default.
- W4297876574 cites W2901448577 @default.
- W4297876574 cites W2902327049 @default.
- W4297876574 cites W2923643343 @default.
- W4297876574 cites W2951786796 @default.
- W4297876574 cites W2954091740 @default.
- W4297876574 cites W2981586399 @default.
- W4297876574 cites W3007293141 @default.
- W4297876574 cites W3040491274 @default.
- W4297876574 cites W3114537568 @default.
- W4297876574 cites W3126567032 @default.
- W4297876574 cites W3211647702 @default.
- W4297876574 cites W4214599526 @default.
- W4297876574 cites W4229499032 @default.
- W4297876574 cites W4283782523 @default.
- W4297876574 cites W4293100451 @default.
- W4297876574 doi "https://doi.org/10.21203/rs.3.rs-1995778/v1" @default.
- W4297876574 hasPublicationYear "2022" @default.
- W4297876574 type Work @default.
- W4297876574 citedByCount "0" @default.
- W4297876574 crossrefType "posted-content" @default.
- W4297876574 hasAuthorship W4297876574A5058642197 @default.
- W4297876574 hasBestOaLocation W42978765741 @default.
- W4297876574 hasConcept C105795698 @default.
- W4297876574 hasConcept C111472728 @default.
- W4297876574 hasConcept C11413529 @default.
- W4297876574 hasConcept C124101348 @default.
- W4297876574 hasConcept C127413603 @default.
- W4297876574 hasConcept C128990827 @default.
- W4297876574 hasConcept C138885662 @default.
- W4297876574 hasConcept C139945424 @default.
- W4297876574 hasConcept C154945302 @default.
- W4297876574 hasConcept C155512373 @default.
- W4297876574 hasConcept C179717631 @default.
- W4297876574 hasConcept C18903297 @default.
- W4297876574 hasConcept C2779530757 @default.
- W4297876574 hasConcept C2780797713 @default.
- W4297876574 hasConcept C33923547 @default.
- W4297876574 hasConcept C39432304 @default.
- W4297876574 hasConcept C41008148 @default.
- W4297876574 hasConcept C48921125 @default.
- W4297876574 hasConcept C50644808 @default.
- W4297876574 hasConcept C86803240 @default.
- W4297876574 hasConcept C88463610 @default.
- W4297876574 hasConcept C88862950 @default.
- W4297876574 hasConceptScore W4297876574C105795698 @default.
- W4297876574 hasConceptScore W4297876574C111472728 @default.
- W4297876574 hasConceptScore W4297876574C11413529 @default.
- W4297876574 hasConceptScore W4297876574C124101348 @default.
- W4297876574 hasConceptScore W4297876574C127413603 @default.
- W4297876574 hasConceptScore W4297876574C128990827 @default.
- W4297876574 hasConceptScore W4297876574C138885662 @default.
- W4297876574 hasConceptScore W4297876574C139945424 @default.
- W4297876574 hasConceptScore W4297876574C154945302 @default.
- W4297876574 hasConceptScore W4297876574C155512373 @default.
- W4297876574 hasConceptScore W4297876574C179717631 @default.
- W4297876574 hasConceptScore W4297876574C18903297 @default.
- W4297876574 hasConceptScore W4297876574C2779530757 @default.
- W4297876574 hasConceptScore W4297876574C2780797713 @default.
- W4297876574 hasConceptScore W4297876574C33923547 @default.
- W4297876574 hasConceptScore W4297876574C39432304 @default.
- W4297876574 hasConceptScore W4297876574C41008148 @default.
- W4297876574 hasConceptScore W4297876574C48921125 @default.
- W4297876574 hasConceptScore W4297876574C50644808 @default.
- W4297876574 hasConceptScore W4297876574C86803240 @default.
- W4297876574 hasConceptScore W4297876574C88463610 @default.
- W4297876574 hasConceptScore W4297876574C88862950 @default.
- W4297876574 hasLocation W42978765741 @default.
- W4297876574 hasOpenAccess W4297876574 @default.
- W4297876574 hasPrimaryLocation W42978765741 @default.
- W4297876574 hasRelatedWork W1987874405 @default.
- W4297876574 hasRelatedWork W2780776411 @default.
- W4297876574 hasRelatedWork W2797282764 @default.
- W4297876574 hasRelatedWork W2899981263 @default.
- W4297876574 hasRelatedWork W2904985375 @default.
- W4297876574 hasRelatedWork W3017119374 @default.
- W4297876574 hasRelatedWork W3128923042 @default.
- W4297876574 hasRelatedWork W3182706339 @default.
- W4297876574 hasRelatedWork W4319731084 @default.