Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297878684> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4297878684 endingPage "118826" @default.
- W4297878684 startingPage "118826" @default.
- W4297878684 abstract "The current crop rows detection based on machine vision generally has the problems of low detection accuracy and poor real-time performance. Moreover, crop rows detection remains a challenging problem in complex field conditions, such as high weeds pressure, poor illumination conditions, and vegetation foliage shading. We propose a crop rows detection algorithm based on autonomous extraction of ROI (Region of interest). The prior method computes the feature points of the entire image and groups them into the crop rows which they belong to. Instead, we consider the core of crop rows detection problem to be the extraction of the travelling area of agricultural machinery in maize fields. A YOLO (You Only Look Once) neural network is employed to predict the travelling area of the agricultural machinery end-to-end. The prediction boxes are unified into ROI and the crop and soil background are segmented in the ROI by Excess Green operator and Otsu’s method. Then, the feature points of crops are extracted using FAST (Features from Accelerated Segment Test) corner point detection, and finally the detection lines of crop rows are fitted with least squares method. Because image recognition is limited to a valid region after the ROI is extracted, the processing speed of our algorithm is remarkably fast. It takes only about 25 ms to process a single image (640*360 pixels) and the frame rate of video stream exceeds 40FPS. Meanwhile, it can achieve high accuracy and robust extraction of ROI in various maize fields. The average error angle of the detection lines is 1.88°, which can meet the real-time and accuracy requirements of field navigation. The proposed algorithm can provide a new solution to the current machine vision-based navigation technology for agricultural machinery. Code is available at: https://github.com/WoodratTradeCo/crop-rows-detection." @default.
- W4297878684 created "2022-10-01" @default.
- W4297878684 creator A5016508954 @default.
- W4297878684 creator A5028517540 @default.
- W4297878684 creator A5049692788 @default.
- W4297878684 creator A5053207994 @default.
- W4297878684 creator A5057729209 @default.
- W4297878684 creator A5058605548 @default.
- W4297878684 creator A5089580069 @default.
- W4297878684 creator A5091518088 @default.
- W4297878684 date "2023-03-01" @default.
- W4297878684 modified "2023-10-17" @default.
- W4297878684 title "Real-time detection of crop rows in maize fields based on autonomous extraction of ROI" @default.
- W4297878684 cites W1973700570 @default.
- W4297878684 cites W1976044339 @default.
- W4297878684 cites W1976977979 @default.
- W4297878684 cites W1989428811 @default.
- W4297878684 cites W2000143088 @default.
- W4297878684 cites W2039900264 @default.
- W4297878684 cites W2070726202 @default.
- W4297878684 cites W2087457527 @default.
- W4297878684 cites W2102605133 @default.
- W4297878684 cites W2108511311 @default.
- W4297878684 cites W2133059825 @default.
- W4297878684 cites W2170282673 @default.
- W4297878684 cites W2194775991 @default.
- W4297878684 cites W2295003864 @default.
- W4297878684 cites W2350910647 @default.
- W4297878684 cites W2563914425 @default.
- W4297878684 cites W2866175125 @default.
- W4297878684 cites W2892071132 @default.
- W4297878684 cites W2905108967 @default.
- W4297878684 cites W2944444936 @default.
- W4297878684 cites W2963037989 @default.
- W4297878684 cites W2971705031 @default.
- W4297878684 cites W2979383053 @default.
- W4297878684 cites W3095578099 @default.
- W4297878684 cites W3106250896 @default.
- W4297878684 cites W3108734169 @default.
- W4297878684 cites W3189784101 @default.
- W4297878684 cites W3199238879 @default.
- W4297878684 cites W3206619417 @default.
- W4297878684 cites W4200231863 @default.
- W4297878684 cites W4232190498 @default.
- W4297878684 cites W639708223 @default.
- W4297878684 doi "https://doi.org/10.1016/j.eswa.2022.118826" @default.
- W4297878684 hasPublicationYear "2023" @default.
- W4297878684 type Work @default.
- W4297878684 citedByCount "14" @default.
- W4297878684 countsByYear W42978786842022 @default.
- W4297878684 countsByYear W42978786842023 @default.
- W4297878684 crossrefType "journal-article" @default.
- W4297878684 hasAuthorship W4297878684A5016508954 @default.
- W4297878684 hasAuthorship W4297878684A5028517540 @default.
- W4297878684 hasAuthorship W4297878684A5049692788 @default.
- W4297878684 hasAuthorship W4297878684A5053207994 @default.
- W4297878684 hasAuthorship W4297878684A5057729209 @default.
- W4297878684 hasAuthorship W4297878684A5058605548 @default.
- W4297878684 hasAuthorship W4297878684A5089580069 @default.
- W4297878684 hasAuthorship W4297878684A5091518088 @default.
- W4297878684 hasConcept C135598885 @default.
- W4297878684 hasConcept C153180895 @default.
- W4297878684 hasConcept C154945302 @default.
- W4297878684 hasConcept C160633673 @default.
- W4297878684 hasConcept C19609008 @default.
- W4297878684 hasConcept C31972630 @default.
- W4297878684 hasConcept C33923547 @default.
- W4297878684 hasConcept C41008148 @default.
- W4297878684 hasConcept C52622490 @default.
- W4297878684 hasConcept C77088390 @default.
- W4297878684 hasConceptScore W4297878684C135598885 @default.
- W4297878684 hasConceptScore W4297878684C153180895 @default.
- W4297878684 hasConceptScore W4297878684C154945302 @default.
- W4297878684 hasConceptScore W4297878684C160633673 @default.
- W4297878684 hasConceptScore W4297878684C19609008 @default.
- W4297878684 hasConceptScore W4297878684C31972630 @default.
- W4297878684 hasConceptScore W4297878684C33923547 @default.
- W4297878684 hasConceptScore W4297878684C41008148 @default.
- W4297878684 hasConceptScore W4297878684C52622490 @default.
- W4297878684 hasConceptScore W4297878684C77088390 @default.
- W4297878684 hasLocation W42978786841 @default.
- W4297878684 hasOpenAccess W4297878684 @default.
- W4297878684 hasPrimaryLocation W42978786841 @default.
- W4297878684 hasRelatedWork W2033213769 @default.
- W4297878684 hasRelatedWork W2056912418 @default.
- W4297878684 hasRelatedWork W2064771172 @default.
- W4297878684 hasRelatedWork W2112208972 @default.
- W4297878684 hasRelatedWork W2123759770 @default.
- W4297878684 hasRelatedWork W2151520854 @default.
- W4297878684 hasRelatedWork W2373006798 @default.
- W4297878684 hasRelatedWork W2601157893 @default.
- W4297878684 hasRelatedWork W2811390910 @default.
- W4297878684 hasRelatedWork W4312376745 @default.
- W4297878684 hasVolume "213" @default.
- W4297878684 isParatext "false" @default.
- W4297878684 isRetracted "false" @default.
- W4297878684 workType "article" @default.