Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297882578> ?p ?o ?g. }
- W4297882578 endingPage "119975" @default.
- W4297882578 startingPage "119975" @default.
- W4297882578 abstract "Proton exchange membrane fuel cell (PEMFC) systems are emerging as one of the most promising solutions for carbon neutrality in transportation, however, durability problem remain a major obstacle to their large-scale commercialization. Developing an accurate model to predict the short-term aging state and long-term durability level of PEMFC is conducive to formulating optimal measures in time and further to improving durability. In this paper, the short-term voltage degradation and long-term durability level are predicted and evaluated by combining machine learning (ML) methods with time-series voltage degradation data obtained under vehicle dynamic load. In the short-term forecasting stage, the long short-term memory (LSTM) model, the support vector regression (SVR) model, and the LSTM-SVR combination model are developed respectively, and the prediction results of the three models are compared and evaluated. The LSTM-SVR combined model achieved the best short-term prediction accuracy of 96.6%, followed by LSTM model (95.5%). Considering the difficulty of model deployment and the feasibility of quickly assessing long-term durability in practical application, a LSTM-based model rolling prediction mechanism is proposed to rapidly evaluate the long-term durability index of the developed PEMFC system, the results show that the proposed forecasting model and method can accurately predict the voltage degradation trend and quickly evaluate the long-term durability level, which not only makes contributions to greatly saving the durability R&D costs, but also provides the possibility to adjust the optimization measures in real-time to further improve the durability according to the prediction results." @default.
- W4297882578 created "2022-10-01" @default.
- W4297882578 creator A5014507212 @default.
- W4297882578 creator A5020141096 @default.
- W4297882578 creator A5025255102 @default.
- W4297882578 creator A5038367972 @default.
- W4297882578 date "2022-11-01" @default.
- W4297882578 modified "2023-10-14" @default.
- W4297882578 title "Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: Development and evaluation of machine learning models" @default.
- W4297882578 cites W1973868537 @default.
- W4297882578 cites W1978950079 @default.
- W4297882578 cites W1993969024 @default.
- W4297882578 cites W2001044670 @default.
- W4297882578 cites W2004899107 @default.
- W4297882578 cites W2021008088 @default.
- W4297882578 cites W2024706357 @default.
- W4297882578 cites W2029952112 @default.
- W4297882578 cites W2038777449 @default.
- W4297882578 cites W2057258330 @default.
- W4297882578 cites W2064675550 @default.
- W4297882578 cites W2065595923 @default.
- W4297882578 cites W2070040585 @default.
- W4297882578 cites W2102932673 @default.
- W4297882578 cites W2115620028 @default.
- W4297882578 cites W2171928131 @default.
- W4297882578 cites W2221633010 @default.
- W4297882578 cites W226747265 @default.
- W4297882578 cites W2469479427 @default.
- W4297882578 cites W2480648100 @default.
- W4297882578 cites W2485909853 @default.
- W4297882578 cites W2582089600 @default.
- W4297882578 cites W2593505236 @default.
- W4297882578 cites W2604099671 @default.
- W4297882578 cites W2606865441 @default.
- W4297882578 cites W2617137613 @default.
- W4297882578 cites W2738399129 @default.
- W4297882578 cites W2745979335 @default.
- W4297882578 cites W2748357818 @default.
- W4297882578 cites W2765980913 @default.
- W4297882578 cites W2772891663 @default.
- W4297882578 cites W2798241172 @default.
- W4297882578 cites W2800564857 @default.
- W4297882578 cites W2807125817 @default.
- W4297882578 cites W2892180865 @default.
- W4297882578 cites W2894758925 @default.
- W4297882578 cites W2899336917 @default.
- W4297882578 cites W2908107822 @default.
- W4297882578 cites W2909815042 @default.
- W4297882578 cites W2920901284 @default.
- W4297882578 cites W2927719797 @default.
- W4297882578 cites W2935832762 @default.
- W4297882578 cites W2951453118 @default.
- W4297882578 cites W2973128894 @default.
- W4297882578 cites W2996740073 @default.
- W4297882578 cites W3010836948 @default.
- W4297882578 cites W3012463083 @default.
- W4297882578 cites W3015940208 @default.
- W4297882578 cites W3033731711 @default.
- W4297882578 cites W3035177386 @default.
- W4297882578 cites W3039570449 @default.
- W4297882578 cites W3082012736 @default.
- W4297882578 cites W3096798137 @default.
- W4297882578 cites W3121337228 @default.
- W4297882578 cites W3124241006 @default.
- W4297882578 cites W3128504039 @default.
- W4297882578 cites W3186607419 @default.
- W4297882578 cites W3203563765 @default.
- W4297882578 cites W4210884890 @default.
- W4297882578 cites W4280614049 @default.
- W4297882578 cites W4293099866 @default.
- W4297882578 doi "https://doi.org/10.1016/j.apenergy.2022.119975" @default.
- W4297882578 hasPublicationYear "2022" @default.
- W4297882578 type Work @default.
- W4297882578 citedByCount "9" @default.
- W4297882578 countsByYear W42978825782022 @default.
- W4297882578 countsByYear W42978825782023 @default.
- W4297882578 crossrefType "journal-article" @default.
- W4297882578 hasAuthorship W4297882578A5014507212 @default.
- W4297882578 hasAuthorship W4297882578A5020141096 @default.
- W4297882578 hasAuthorship W4297882578A5025255102 @default.
- W4297882578 hasAuthorship W4297882578A5038367972 @default.
- W4297882578 hasConcept C104304963 @default.
- W4297882578 hasConcept C119857082 @default.
- W4297882578 hasConcept C121332964 @default.
- W4297882578 hasConcept C12267149 @default.
- W4297882578 hasConcept C127413603 @default.
- W4297882578 hasConcept C132319479 @default.
- W4297882578 hasConcept C154945302 @default.
- W4297882578 hasConcept C17744445 @default.
- W4297882578 hasConcept C199539241 @default.
- W4297882578 hasConcept C200601418 @default.
- W4297882578 hasConcept C2779679103 @default.
- W4297882578 hasConcept C2780625559 @default.
- W4297882578 hasConcept C2987658370 @default.
- W4297882578 hasConcept C41008148 @default.
- W4297882578 hasConcept C42360764 @default.
- W4297882578 hasConcept C61797465 @default.
- W4297882578 hasConcept C62520636 @default.