Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297883535> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4297883535 abstract "We describe arbitrary multiplicative differential forms on Lie groupoids infinitesimally, i.e., in terms of Lie algebroid data. This description is based on the study of linear differential forms on Lie algebroids and encompasses many known integration results related to Poisson geometry. We also revisit multiplicative multivector fields and their infinitesimal counterparts, drawing a parallel between the two theories." @default.
- W4297883535 created "2022-10-01" @default.
- W4297883535 creator A5065895246 @default.
- W4297883535 creator A5069009417 @default.
- W4297883535 date "2010-01-04" @default.
- W4297883535 modified "2023-10-18" @default.
- W4297883535 title "Multiplicative forms at the infinitesimal level" @default.
- W4297883535 doi "https://doi.org/10.48550/arxiv.1001.0534" @default.
- W4297883535 hasPublicationYear "2010" @default.
- W4297883535 type Work @default.
- W4297883535 citedByCount "0" @default.
- W4297883535 crossrefType "posted-content" @default.
- W4297883535 hasAuthorship W4297883535A5065895246 @default.
- W4297883535 hasAuthorship W4297883535A5069009417 @default.
- W4297883535 hasBestOaLocation W42978835351 @default.
- W4297883535 hasConcept C100376341 @default.
- W4297883535 hasConcept C100906024 @default.
- W4297883535 hasConcept C105795698 @default.
- W4297883535 hasConcept C121332964 @default.
- W4297883535 hasConcept C134306372 @default.
- W4297883535 hasConcept C136119220 @default.
- W4297883535 hasConcept C153011950 @default.
- W4297883535 hasConcept C192939610 @default.
- W4297883535 hasConcept C202444582 @default.
- W4297883535 hasConcept C26238338 @default.
- W4297883535 hasConcept C2776503324 @default.
- W4297883535 hasConcept C33923547 @default.
- W4297883535 hasConcept C42747912 @default.
- W4297883535 hasConcept C51568863 @default.
- W4297883535 hasConcept C81999800 @default.
- W4297883535 hasConcept C91229774 @default.
- W4297883535 hasConcept C93226319 @default.
- W4297883535 hasConcept C97355855 @default.
- W4297883535 hasConceptScore W4297883535C100376341 @default.
- W4297883535 hasConceptScore W4297883535C100906024 @default.
- W4297883535 hasConceptScore W4297883535C105795698 @default.
- W4297883535 hasConceptScore W4297883535C121332964 @default.
- W4297883535 hasConceptScore W4297883535C134306372 @default.
- W4297883535 hasConceptScore W4297883535C136119220 @default.
- W4297883535 hasConceptScore W4297883535C153011950 @default.
- W4297883535 hasConceptScore W4297883535C192939610 @default.
- W4297883535 hasConceptScore W4297883535C202444582 @default.
- W4297883535 hasConceptScore W4297883535C26238338 @default.
- W4297883535 hasConceptScore W4297883535C2776503324 @default.
- W4297883535 hasConceptScore W4297883535C33923547 @default.
- W4297883535 hasConceptScore W4297883535C42747912 @default.
- W4297883535 hasConceptScore W4297883535C51568863 @default.
- W4297883535 hasConceptScore W4297883535C81999800 @default.
- W4297883535 hasConceptScore W4297883535C91229774 @default.
- W4297883535 hasConceptScore W4297883535C93226319 @default.
- W4297883535 hasConceptScore W4297883535C97355855 @default.
- W4297883535 hasLocation W42978835351 @default.
- W4297883535 hasOpenAccess W4297883535 @default.
- W4297883535 hasPrimaryLocation W42978835351 @default.
- W4297883535 hasRelatedWork W1505134466 @default.
- W4297883535 hasRelatedWork W1632837706 @default.
- W4297883535 hasRelatedWork W1970333157 @default.
- W4297883535 hasRelatedWork W2033731566 @default.
- W4297883535 hasRelatedWork W2038065921 @default.
- W4297883535 hasRelatedWork W2091901158 @default.
- W4297883535 hasRelatedWork W2544863287 @default.
- W4297883535 hasRelatedWork W2964086024 @default.
- W4297883535 hasRelatedWork W4297883535 @default.
- W4297883535 hasRelatedWork W4213466168 @default.
- W4297883535 isParatext "false" @default.
- W4297883535 isRetracted "false" @default.
- W4297883535 workType "article" @default.