Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297883949> ?p ?o ?g. }
- W4297883949 endingPage "1505" @default.
- W4297883949 startingPage "1485" @default.
- W4297883949 abstract "Numerous news or event pictures are taken and shared on the internet every day that have abundant information worth being mined, but only a small fraction of them are geotagged. The visual content of the news image hints at clues of the geographical location because they are usually taken at the site of the incident, which provides a prerequisite for geo-localization. This paper proposes an automated pipeline based on deep learning for the geo-localization of news pictures in a large-scale urban environment using geotagged street view images as a reference dataset. The approach obtains location information by constructing an attention-based feature extraction network. Then, the image features are aggregated, and the candidate street view image results are retrieved by the selective matching kernel function. Finally, the coordinates of the news images are estimated by the kernel density prediction method. The pipeline is tested in the news pictures in Hong Kong. In the comparison experiments, the proposed pipeline shows stable performance and generalizability in the large-scale urban environment. In addition, the performance analysis of components in the pipeline shows the ability to recognize localization features of partial areas in pictures and the effectiveness of the proposed solution in news picture geo-localization." @default.
- W4297883949 created "2022-10-01" @default.
- W4297883949 creator A5006157963 @default.
- W4297883949 creator A5036928319 @default.
- W4297883949 creator A5059896497 @default.
- W4297883949 creator A5062153725 @default.
- W4297883949 creator A5075906462 @default.
- W4297883949 creator A5086696478 @default.
- W4297883949 date "2022-09-12" @default.
- W4297883949 modified "2023-09-25" @default.
- W4297883949 title "A news picture geo-localization pipeline based on deep learning and street view images" @default.
- W4297883949 cites W1976794880 @default.
- W4297883949 cites W2012592962 @default.
- W4297883949 cites W2054957336 @default.
- W4297883949 cites W2090952998 @default.
- W4297883949 cites W2103924867 @default.
- W4297883949 cites W2114344724 @default.
- W4297883949 cites W2131846894 @default.
- W4297883949 cites W2147238549 @default.
- W4297883949 cites W2156830856 @default.
- W4297883949 cites W2194775991 @default.
- W4297883949 cites W2204975001 @default.
- W4297883949 cites W2295537791 @default.
- W4297883949 cites W2612301670 @default.
- W4297883949 cites W2617552557 @default.
- W4297883949 cites W2737075200 @default.
- W4297883949 cites W2740418457 @default.
- W4297883949 cites W2747900861 @default.
- W4297883949 cites W2802080802 @default.
- W4297883949 cites W2902335761 @default.
- W4297883949 cites W2932885683 @default.
- W4297883949 cites W2951019013 @default.
- W4297883949 cites W2963474852 @default.
- W4297883949 cites W2963588253 @default.
- W4297883949 cites W2964157791 @default.
- W4297883949 cites W2998702515 @default.
- W4297883949 cites W3001257091 @default.
- W4297883949 cites W3009379215 @default.
- W4297883949 cites W3027669667 @default.
- W4297883949 cites W3032684905 @default.
- W4297883949 cites W3041665197 @default.
- W4297883949 cites W3042163741 @default.
- W4297883949 cites W3081227581 @default.
- W4297883949 cites W3091792853 @default.
- W4297883949 cites W3092933908 @default.
- W4297883949 cites W3095367607 @default.
- W4297883949 cites W3100623370 @default.
- W4297883949 cites W3106237638 @default.
- W4297883949 cites W3110761912 @default.
- W4297883949 cites W3119125292 @default.
- W4297883949 cites W3124216104 @default.
- W4297883949 cites W3174800995 @default.
- W4297883949 cites W3176602998 @default.
- W4297883949 cites W3200865560 @default.
- W4297883949 cites W3203381609 @default.
- W4297883949 cites W3205797353 @default.
- W4297883949 cites W3206363570 @default.
- W4297883949 cites W3212301219 @default.
- W4297883949 cites W3216025718 @default.
- W4297883949 cites W3217508649 @default.
- W4297883949 cites W4206823261 @default.
- W4297883949 cites W4221138518 @default.
- W4297883949 cites W4221142457 @default.
- W4297883949 cites W4225762581 @default.
- W4297883949 cites W4229066982 @default.
- W4297883949 cites W4294491642 @default.
- W4297883949 cites W4312597490 @default.
- W4297883949 cites W4382897077 @default.
- W4297883949 doi "https://doi.org/10.1080/17538947.2022.2121437" @default.
- W4297883949 hasPublicationYear "2022" @default.
- W4297883949 type Work @default.
- W4297883949 citedByCount "1" @default.
- W4297883949 countsByYear W42978839492023 @default.
- W4297883949 crossrefType "journal-article" @default.
- W4297883949 hasAuthorship W4297883949A5006157963 @default.
- W4297883949 hasAuthorship W4297883949A5036928319 @default.
- W4297883949 hasAuthorship W4297883949A5059896497 @default.
- W4297883949 hasAuthorship W4297883949A5062153725 @default.
- W4297883949 hasAuthorship W4297883949A5075906462 @default.
- W4297883949 hasAuthorship W4297883949A5086696478 @default.
- W4297883949 hasBestOaLocation W42978839491 @default.
- W4297883949 hasConcept C105795698 @default.
- W4297883949 hasConcept C114614502 @default.
- W4297883949 hasConcept C115961682 @default.
- W4297883949 hasConcept C124101348 @default.
- W4297883949 hasConcept C136764020 @default.
- W4297883949 hasConcept C138885662 @default.
- W4297883949 hasConcept C153180895 @default.
- W4297883949 hasConcept C154945302 @default.
- W4297883949 hasConcept C165064840 @default.
- W4297883949 hasConcept C199360897 @default.
- W4297883949 hasConcept C205649164 @default.
- W4297883949 hasConcept C22041718 @default.
- W4297883949 hasConcept C2776401178 @default.
- W4297883949 hasConcept C2778755073 @default.
- W4297883949 hasConcept C31972630 @default.
- W4297883949 hasConcept C33923547 @default.
- W4297883949 hasConcept C41008148 @default.