Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297884534> ?p ?o ?g. }
- W4297884534 abstract "Abstract Purpose Several predictive models have been developed to predict pathological complete response (pCR) after neoadjuvant chemotherapy (NAC), but few of them are broadly applicable due to radiologic complexity and institution-specific clinical variables, and none have been externally validated. The purpose of this study was to develop and externally validate a machine learning model that predicts pCR following NAC in breast cancer patients using routinely collected clinical and demographic variables. Methods Electronic medical record data of patients with advanced breast cancer who received NAC prior to surgical resection from January 2017 to December 2020 were reviewed. Patient data from Hospital A was split into training and internal validation cohort. Five machine learning techniques including gradient boosting machine, support vector machine, random forest, decision tree and neural network were used to build predictive models and area under the receiver-operating characteristic curve (AUC) were compared to select the best model. Finally, the model was further validated in an independent cohort from Hospital B. Results A total of 1003 patients were included in the study: 287 in the training cohort, 71 in the internal validation cohort, and 645 in the external validation cohort. Overall, 36.3% of patients achieved pCR. Among the five machine learning models, gradient boosting machine showed the highest AUC for pCR prediction (AUC 0.903, 95% CI 0.833–0.972). External validation confirmed AUC of 0.833 (95% CI 0.800-0.865). Conclusion We used commonly available clinical and demographic variables to develop a machine learning model to predict pCR following NAC. External validation of the model demonstrated good discrimination power, which showed that routinely collected variables are sufficient to build a good prediction model." @default.
- W4297884534 created "2022-10-01" @default.
- W4297884534 creator A5005022842 @default.
- W4297884534 creator A5012153148 @default.
- W4297884534 creator A5016948885 @default.
- W4297884534 creator A5025382964 @default.
- W4297884534 creator A5044308888 @default.
- W4297884534 creator A5053033124 @default.
- W4297884534 creator A5063587278 @default.
- W4297884534 creator A5065878802 @default.
- W4297884534 creator A5067962215 @default.
- W4297884534 creator A5068800864 @default.
- W4297884534 creator A5085614043 @default.
- W4297884534 creator A5087673406 @default.
- W4297884534 creator A5087787379 @default.
- W4297884534 date "2022-09-20" @default.
- W4297884534 modified "2023-09-28" @default.
- W4297884534 title "Development and External Validation of a Machine Learning Model to Predict Pathological Complete Response after Neoadjuvant Chemotherapy in Breast Cancer: model development using commonly available clinical and demographic variables" @default.
- W4297884534 cites W1955397179 @default.
- W4297884534 cites W1983024255 @default.
- W4297884534 cites W2038833688 @default.
- W4297884534 cites W2053074390 @default.
- W4297884534 cites W2075894019 @default.
- W4297884534 cites W2082187635 @default.
- W4297884534 cites W2114736619 @default.
- W4297884534 cites W2147415463 @default.
- W4297884534 cites W2157250162 @default.
- W4297884534 cites W2170003495 @default.
- W4297884534 cites W2370924594 @default.
- W4297884534 cites W2565985385 @default.
- W4297884534 cites W2801045744 @default.
- W4297884534 cites W2896084151 @default.
- W4297884534 cites W2898574163 @default.
- W4297884534 cites W2966514972 @default.
- W4297884534 cites W3047280446 @default.
- W4297884534 cites W3086437055 @default.
- W4297884534 cites W3094570415 @default.
- W4297884534 cites W3130450656 @default.
- W4297884534 cites W3138202589 @default.
- W4297884534 doi "https://doi.org/10.21203/rs.3.rs-2035878/v1" @default.
- W4297884534 hasPublicationYear "2022" @default.
- W4297884534 type Work @default.
- W4297884534 citedByCount "0" @default.
- W4297884534 crossrefType "posted-content" @default.
- W4297884534 hasAuthorship W4297884534A5005022842 @default.
- W4297884534 hasAuthorship W4297884534A5012153148 @default.
- W4297884534 hasAuthorship W4297884534A5016948885 @default.
- W4297884534 hasAuthorship W4297884534A5025382964 @default.
- W4297884534 hasAuthorship W4297884534A5044308888 @default.
- W4297884534 hasAuthorship W4297884534A5053033124 @default.
- W4297884534 hasAuthorship W4297884534A5063587278 @default.
- W4297884534 hasAuthorship W4297884534A5065878802 @default.
- W4297884534 hasAuthorship W4297884534A5067962215 @default.
- W4297884534 hasAuthorship W4297884534A5068800864 @default.
- W4297884534 hasAuthorship W4297884534A5085614043 @default.
- W4297884534 hasAuthorship W4297884534A5087673406 @default.
- W4297884534 hasAuthorship W4297884534A5087787379 @default.
- W4297884534 hasBestOaLocation W42978845341 @default.
- W4297884534 hasConcept C119857082 @default.
- W4297884534 hasConcept C121608353 @default.
- W4297884534 hasConcept C126322002 @default.
- W4297884534 hasConcept C143998085 @default.
- W4297884534 hasConcept C154945302 @default.
- W4297884534 hasConcept C169258074 @default.
- W4297884534 hasConcept C41008148 @default.
- W4297884534 hasConcept C46686674 @default.
- W4297884534 hasConcept C530470458 @default.
- W4297884534 hasConcept C58471807 @default.
- W4297884534 hasConcept C70153297 @default.
- W4297884534 hasConcept C71924100 @default.
- W4297884534 hasConcept C72563966 @default.
- W4297884534 hasConcept C84525736 @default.
- W4297884534 hasConceptScore W4297884534C119857082 @default.
- W4297884534 hasConceptScore W4297884534C121608353 @default.
- W4297884534 hasConceptScore W4297884534C126322002 @default.
- W4297884534 hasConceptScore W4297884534C143998085 @default.
- W4297884534 hasConceptScore W4297884534C154945302 @default.
- W4297884534 hasConceptScore W4297884534C169258074 @default.
- W4297884534 hasConceptScore W4297884534C41008148 @default.
- W4297884534 hasConceptScore W4297884534C46686674 @default.
- W4297884534 hasConceptScore W4297884534C530470458 @default.
- W4297884534 hasConceptScore W4297884534C58471807 @default.
- W4297884534 hasConceptScore W4297884534C70153297 @default.
- W4297884534 hasConceptScore W4297884534C71924100 @default.
- W4297884534 hasConceptScore W4297884534C72563966 @default.
- W4297884534 hasConceptScore W4297884534C84525736 @default.
- W4297884534 hasLocation W42978845341 @default.
- W4297884534 hasOpenAccess W4297884534 @default.
- W4297884534 hasPrimaryLocation W42978845341 @default.
- W4297884534 hasRelatedWork W3100297620 @default.
- W4297884534 hasRelatedWork W3200719183 @default.
- W4297884534 hasRelatedWork W3204641204 @default.
- W4297884534 hasRelatedWork W3212730154 @default.
- W4297884534 hasRelatedWork W4200057378 @default.
- W4297884534 hasRelatedWork W4249229055 @default.
- W4297884534 hasRelatedWork W4288057626 @default.
- W4297884534 hasRelatedWork W4293069612 @default.
- W4297884534 hasRelatedWork W4296081764 @default.
- W4297884534 hasRelatedWork W4298012357 @default.
- W4297884534 isParatext "false" @default.