Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297884833> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4297884833 abstract "Abstract Accurately predicting effective treatment methods based on personalized tumor genetic profiles is a major goal of precision cancer medicine. Because people with breast cancer at comparable stages respond differently to treatment, it is essential to gain insight into the variables that influence treatment success. This study presents a supervised multinomial logistic regression model for predicting the best adjuvant therapy for breast cancer patients to lower the probability of metastatic recurrence. This model will assist health professionals (physicians) in making judgments about which medicinal regimens to suggest to patients. In addition, this article presents a comparison of several multinomial machine learning methods (Logistic Regression (LR), Naive Bayes (NB), Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), and Neural Network (ANN)).The results reveal that the Random Forest classifier is more effective in terms of adjuvant therapy combination prediction accuracy." @default.
- W4297884833 created "2022-10-01" @default.
- W4297884833 creator A5032847426 @default.
- W4297884833 creator A5053843586 @default.
- W4297884833 creator A5083880811 @default.
- W4297884833 date "2022-09-20" @default.
- W4297884833 modified "2023-10-14" @default.
- W4297884833 title "Multinomial classification to predict the most effective adjuvant combination therapies for breast cancer patients" @default.
- W4297884833 cites W1990913882 @default.
- W4297884833 cites W2000368921 @default.
- W4297884833 cites W2022058268 @default.
- W4297884833 cites W2059352370 @default.
- W4297884833 cites W2128276979 @default.
- W4297884833 cites W2134124507 @default.
- W4297884833 cites W2370924594 @default.
- W4297884833 cites W2587314106 @default.
- W4297884833 cites W2736326930 @default.
- W4297884833 cites W2783063799 @default.
- W4297884833 cites W2819329157 @default.
- W4297884833 cites W2889646458 @default.
- W4297884833 cites W2896886167 @default.
- W4297884833 cites W2911964244 @default.
- W4297884833 cites W2963418546 @default.
- W4297884833 cites W2979728569 @default.
- W4297884833 cites W3026190971 @default.
- W4297884833 cites W3114973470 @default.
- W4297884833 cites W3118625667 @default.
- W4297884833 cites W3136835733 @default.
- W4297884833 cites W3174338433 @default.
- W4297884833 cites W4200201524 @default.
- W4297884833 cites W4214480233 @default.
- W4297884833 cites W4214837959 @default.
- W4297884833 cites W4248196235 @default.
- W4297884833 cites W4254921963 @default.
- W4297884833 cites W4254993971 @default.
- W4297884833 cites W85220942 @default.
- W4297884833 doi "https://doi.org/10.21203/rs.3.rs-1574021/v2" @default.
- W4297884833 hasPublicationYear "2022" @default.
- W4297884833 type Work @default.
- W4297884833 citedByCount "0" @default.
- W4297884833 crossrefType "posted-content" @default.
- W4297884833 hasAuthorship W4297884833A5032847426 @default.
- W4297884833 hasAuthorship W4297884833A5053843586 @default.
- W4297884833 hasAuthorship W4297884833A5083880811 @default.
- W4297884833 hasBestOaLocation W42978848331 @default.
- W4297884833 hasConcept C105795698 @default.
- W4297884833 hasConcept C117568660 @default.
- W4297884833 hasConcept C119857082 @default.
- W4297884833 hasConcept C121608353 @default.
- W4297884833 hasConcept C12267149 @default.
- W4297884833 hasConcept C126322002 @default.
- W4297884833 hasConcept C143998085 @default.
- W4297884833 hasConcept C151956035 @default.
- W4297884833 hasConcept C154945302 @default.
- W4297884833 hasConcept C169258074 @default.
- W4297884833 hasConcept C192065140 @default.
- W4297884833 hasConcept C33923547 @default.
- W4297884833 hasConcept C41008148 @default.
- W4297884833 hasConcept C50644808 @default.
- W4297884833 hasConcept C52001869 @default.
- W4297884833 hasConcept C530470458 @default.
- W4297884833 hasConcept C71924100 @default.
- W4297884833 hasConcept C84525736 @default.
- W4297884833 hasConcept C95623464 @default.
- W4297884833 hasConceptScore W4297884833C105795698 @default.
- W4297884833 hasConceptScore W4297884833C117568660 @default.
- W4297884833 hasConceptScore W4297884833C119857082 @default.
- W4297884833 hasConceptScore W4297884833C121608353 @default.
- W4297884833 hasConceptScore W4297884833C12267149 @default.
- W4297884833 hasConceptScore W4297884833C126322002 @default.
- W4297884833 hasConceptScore W4297884833C143998085 @default.
- W4297884833 hasConceptScore W4297884833C151956035 @default.
- W4297884833 hasConceptScore W4297884833C154945302 @default.
- W4297884833 hasConceptScore W4297884833C169258074 @default.
- W4297884833 hasConceptScore W4297884833C192065140 @default.
- W4297884833 hasConceptScore W4297884833C33923547 @default.
- W4297884833 hasConceptScore W4297884833C41008148 @default.
- W4297884833 hasConceptScore W4297884833C50644808 @default.
- W4297884833 hasConceptScore W4297884833C52001869 @default.
- W4297884833 hasConceptScore W4297884833C530470458 @default.
- W4297884833 hasConceptScore W4297884833C71924100 @default.
- W4297884833 hasConceptScore W4297884833C84525736 @default.
- W4297884833 hasConceptScore W4297884833C95623464 @default.
- W4297884833 hasLocation W42978848331 @default.
- W4297884833 hasOpenAccess W4297884833 @default.
- W4297884833 hasPrimaryLocation W42978848331 @default.
- W4297884833 hasRelatedWork W2084779923 @default.
- W4297884833 hasRelatedWork W2979111866 @default.
- W4297884833 hasRelatedWork W3000742622 @default.
- W4297884833 hasRelatedWork W3143658565 @default.
- W4297884833 hasRelatedWork W3157268302 @default.
- W4297884833 hasRelatedWork W3204641204 @default.
- W4297884833 hasRelatedWork W4214820172 @default.
- W4297884833 hasRelatedWork W4281846282 @default.
- W4297884833 hasRelatedWork W4283016678 @default.
- W4297884833 hasRelatedWork W4283836538 @default.
- W4297884833 isParatext "false" @default.
- W4297884833 isRetracted "false" @default.
- W4297884833 workType "article" @default.