Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297887844> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4297887844 abstract "We present first-order perturbation analysis of a simple eigenvalue and the corresponding right and left eigenvectors of a general square matrix, not assumed to be Hermitian or normal. The eigenvalue result is well known to a broad scientific community. The treatment of eigenvectors is more complicated, with a perturbation theory that is not so well known outside a community of specialists. We give two different proofs of the main eigenvector perturbation theorem. The first, a block-diagonalization technique inspired by the numerical linear algebra research community and based on the implicit function theorem, has apparently not appeared in the literature in this form. The second, based on complex function theory and on eigenprojectors, as is standard in analytic perturbation theory, is a simplified version of well-known results in the literature. The second derivation uses a convenient normalization of the right and left eigenvectors defined in terms of the associated eigenprojector, but although this dates back to the 1950s, it is rarely discussed in the literature. We then show how the eigenvector perturbation theory is easily extended to handle other normalizations that are often used in practice. We also explain how to verify the perturbation results computationally. We conclude with some remarks about difficulties introduced by multiple eigenvalues and give references to work on perturbation of invariant subspaces corresponding to multiple or clustered eigenvalues. Throughout the paper we give extensive bibliographic commentary and references for further reading." @default.
- W4297887844 created "2022-10-01" @default.
- W4297887844 creator A5011252539 @default.
- W4297887844 creator A5019550551 @default.
- W4297887844 creator A5069099932 @default.
- W4297887844 date "2019-03-02" @default.
- W4297887844 modified "2023-09-24" @default.
- W4297887844 title "First-order Perturbation Theory for Eigenvalues and Eigenvectors" @default.
- W4297887844 doi "https://doi.org/10.48550/arxiv.1903.00785" @default.
- W4297887844 hasPublicationYear "2019" @default.
- W4297887844 type Work @default.
- W4297887844 citedByCount "0" @default.
- W4297887844 crossrefType "posted-content" @default.
- W4297887844 hasAuthorship W4297887844A5011252539 @default.
- W4297887844 hasAuthorship W4297887844A5019550551 @default.
- W4297887844 hasAuthorship W4297887844A5069099932 @default.
- W4297887844 hasBestOaLocation W42978878441 @default.
- W4297887844 hasConcept C108710211 @default.
- W4297887844 hasConcept C121332964 @default.
- W4297887844 hasConcept C12362212 @default.
- W4297887844 hasConcept C136119220 @default.
- W4297887844 hasConcept C139352143 @default.
- W4297887844 hasConcept C158693339 @default.
- W4297887844 hasConcept C177918212 @default.
- W4297887844 hasConcept C202444582 @default.
- W4297887844 hasConcept C2524010 @default.
- W4297887844 hasConcept C28826006 @default.
- W4297887844 hasConcept C30072841 @default.
- W4297887844 hasConcept C33923547 @default.
- W4297887844 hasConcept C36967811 @default.
- W4297887844 hasConcept C46865736 @default.
- W4297887844 hasConcept C54848796 @default.
- W4297887844 hasConcept C62520636 @default.
- W4297887844 hasConcept C65203669 @default.
- W4297887844 hasConcept C73772418 @default.
- W4297887844 hasConcept C94940 @default.
- W4297887844 hasConceptScore W4297887844C108710211 @default.
- W4297887844 hasConceptScore W4297887844C121332964 @default.
- W4297887844 hasConceptScore W4297887844C12362212 @default.
- W4297887844 hasConceptScore W4297887844C136119220 @default.
- W4297887844 hasConceptScore W4297887844C139352143 @default.
- W4297887844 hasConceptScore W4297887844C158693339 @default.
- W4297887844 hasConceptScore W4297887844C177918212 @default.
- W4297887844 hasConceptScore W4297887844C202444582 @default.
- W4297887844 hasConceptScore W4297887844C2524010 @default.
- W4297887844 hasConceptScore W4297887844C28826006 @default.
- W4297887844 hasConceptScore W4297887844C30072841 @default.
- W4297887844 hasConceptScore W4297887844C33923547 @default.
- W4297887844 hasConceptScore W4297887844C36967811 @default.
- W4297887844 hasConceptScore W4297887844C46865736 @default.
- W4297887844 hasConceptScore W4297887844C54848796 @default.
- W4297887844 hasConceptScore W4297887844C62520636 @default.
- W4297887844 hasConceptScore W4297887844C65203669 @default.
- W4297887844 hasConceptScore W4297887844C73772418 @default.
- W4297887844 hasConceptScore W4297887844C94940 @default.
- W4297887844 hasLocation W42978878441 @default.
- W4297887844 hasOpenAccess W4297887844 @default.
- W4297887844 hasPrimaryLocation W42978878441 @default.
- W4297887844 hasRelatedWork W1996228648 @default.
- W4297887844 hasRelatedWork W2071959257 @default.
- W4297887844 hasRelatedWork W2077030276 @default.
- W4297887844 hasRelatedWork W2113509469 @default.
- W4297887844 hasRelatedWork W2908168470 @default.
- W4297887844 hasRelatedWork W2918886142 @default.
- W4297887844 hasRelatedWork W2946527950 @default.
- W4297887844 hasRelatedWork W37908373 @default.
- W4297887844 hasRelatedWork W4230958871 @default.
- W4297887844 hasRelatedWork W4297887844 @default.
- W4297887844 isParatext "false" @default.
- W4297887844 isRetracted "false" @default.
- W4297887844 workType "article" @default.