Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297889768> ?p ?o ?g. }
- W4297889768 endingPage "1087" @default.
- W4297889768 startingPage "1073" @default.
- W4297889768 abstract "Gas separation is one of the most important industrial processes and is poised to take a larger role in the transition to renewable energy, e.g., carbon capture and hydrogen purification. Conventional gas separation processes involving cryogenic distillation, solvents, and sorbents are energy intensive, and as a result, the energy footprint of gas separations in the chemical industry is extraordinarily high. This has motivated fundamental research toward the development of novel materials for high-performance membranes to improve the energy efficiency of gas separation. These novel materials are expected to overcome the intrinsic limitations of the conventional membrane material, i.e., polymers, where a longstanding trade-off between the separation selectivity and the permeance has motivated research into nanoporous materials as the selective layer for the membranes. In this context, atom-thick materials such as nanoporous single-layer graphene constitute the ultimate limit for the selective layer. Gas transport from atom-thick nanopores is extremely fast, dependent primarily on the energy barrier that the gas molecule experiences in translocating the nanopore. Consequently, the difference in the energy barriers for two gas molecules determines the gas pair selectivity. In this Account, we summarize the development in the field of nanoporous single-layer graphene membranes for gas separation. We start by discussing the mechanism for gas transport across atom-thick nanopores, which then yields the crucial design elements needed to achieve high-performance membranes: (i) nanopores with an adequate electron-density gap to sieve the desired gas component (e.g., smaller than 0.289, 0.33, 0.346, 0.362, and 0.38 nm for H2, CO2, O2, N2, and CH4, respectively), (ii) narrow pore size distribution to limit the nonselective effusive transport from the tail end of the distribution, and (iii) high density of selective pores. We discuss and compare the state-of-the-art bottom-up and top-down routes for the synthesis of nanoporous graphene films. Mechanistic insights and parameters controlling the size, distribution, and density of nanopores are discussed. Fundamental insights are provided into the reaction of ozone with graphene, which has been successfully used by our group to develop membranes with record-high carbon capture performance. Postsynthetic modifications, which allow the tuning of the transport by (i) tailoring the relative contributions of adsorbed-phase and gas-phase transport, (ii) competitive adsorption, and (iii) molecular cutoff adjustment, are discussed. Finally, we discuss practical aspects that are crucial in successfully preparing practical membranes using atom-thick materials as the selective layer, allowing the eventual scale-up of these membranes. Crack- and tear-free preparation of membranes is discussed using the approach of mechanical reinforcement of graphene with nanoporous carbon and polymers, which led to the first reports of millimeter- and centimeter-scale gas-sieving membranes in the year 2018 and 2021, respectively. We conclude with insights and perspectives highlighting the key scientific and technological gaps that must be addressed in the future research." @default.
- W4297889768 created "2022-10-01" @default.
- W4297889768 creator A5024664752 @default.
- W4297889768 creator A5029150762 @default.
- W4297889768 creator A5040968502 @default.
- W4297889768 creator A5053772291 @default.
- W4297889768 creator A5059450755 @default.
- W4297889768 date "2022-09-13" @default.
- W4297889768 modified "2023-10-16" @default.
- W4297889768 title "Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene" @default.
- W4297889768 cites W1581361146 @default.
- W4297889768 cites W1965817544 @default.
- W4297889768 cites W1967752584 @default.
- W4297889768 cites W1981622115 @default.
- W4297889768 cites W1988345588 @default.
- W4297889768 cites W2010561486 @default.
- W4297889768 cites W2017236889 @default.
- W4297889768 cites W2022353023 @default.
- W4297889768 cites W2026873621 @default.
- W4297889768 cites W2053013917 @default.
- W4297889768 cites W2061366494 @default.
- W4297889768 cites W2067765323 @default.
- W4297889768 cites W2067847820 @default.
- W4297889768 cites W2087596838 @default.
- W4297889768 cites W2097773259 @default.
- W4297889768 cites W2108028943 @default.
- W4297889768 cites W2114351820 @default.
- W4297889768 cites W2118849046 @default.
- W4297889768 cites W2137557646 @default.
- W4297889768 cites W2167381746 @default.
- W4297889768 cites W2171700698 @default.
- W4297889768 cites W2298837209 @default.
- W4297889768 cites W2324340280 @default.
- W4297889768 cites W2325533896 @default.
- W4297889768 cites W2328923260 @default.
- W4297889768 cites W2329801454 @default.
- W4297889768 cites W2590015384 @default.
- W4297889768 cites W2609521020 @default.
- W4297889768 cites W2618128586 @default.
- W4297889768 cites W2620839745 @default.
- W4297889768 cites W2624638280 @default.
- W4297889768 cites W2670647378 @default.
- W4297889768 cites W2761330450 @default.
- W4297889768 cites W2810633764 @default.
- W4297889768 cites W2889216396 @default.
- W4297889768 cites W2897409864 @default.
- W4297889768 cites W2912483386 @default.
- W4297889768 cites W2915950764 @default.
- W4297889768 cites W2951017607 @default.
- W4297889768 cites W2956597724 @default.
- W4297889768 cites W2966434717 @default.
- W4297889768 cites W2989467491 @default.
- W4297889768 cites W3039329309 @default.
- W4297889768 cites W3046960903 @default.
- W4297889768 cites W3087340867 @default.
- W4297889768 cites W3092655216 @default.
- W4297889768 cites W3104313923 @default.
- W4297889768 cites W3109933857 @default.
- W4297889768 cites W3133316267 @default.
- W4297889768 cites W3180617761 @default.
- W4297889768 cites W3185044085 @default.
- W4297889768 cites W3197050926 @default.
- W4297889768 cites W3203796331 @default.
- W4297889768 cites W3208535236 @default.
- W4297889768 cites W3208669706 @default.
- W4297889768 cites W4213328051 @default.
- W4297889768 cites W4214807294 @default.
- W4297889768 doi "https://doi.org/10.1021/accountsmr.2c00143" @default.
- W4297889768 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36338295" @default.
- W4297889768 hasPublicationYear "2022" @default.
- W4297889768 type Work @default.
- W4297889768 citedByCount "4" @default.
- W4297889768 countsByYear W42978897682023 @default.
- W4297889768 crossrefType "journal-article" @default.
- W4297889768 hasAuthorship W4297889768A5024664752 @default.
- W4297889768 hasAuthorship W4297889768A5029150762 @default.
- W4297889768 hasAuthorship W4297889768A5040968502 @default.
- W4297889768 hasAuthorship W4297889768A5053772291 @default.
- W4297889768 hasAuthorship W4297889768A5059450755 @default.
- W4297889768 hasBestOaLocation W42978897682 @default.
- W4297889768 hasConcept C105281773 @default.
- W4297889768 hasConcept C127413603 @default.
- W4297889768 hasConcept C141795571 @default.
- W4297889768 hasConcept C150394285 @default.
- W4297889768 hasConcept C151730666 @default.
- W4297889768 hasConcept C171250308 @default.
- W4297889768 hasConcept C178790620 @default.
- W4297889768 hasConcept C18411161 @default.
- W4297889768 hasConcept C185592680 @default.
- W4297889768 hasConcept C192562407 @default.
- W4297889768 hasConcept C21535326 @default.
- W4297889768 hasConcept C2779343474 @default.
- W4297889768 hasConcept C30080830 @default.
- W4297889768 hasConcept C41625074 @default.
- W4297889768 hasConcept C42360764 @default.
- W4297889768 hasConcept C48940184 @default.
- W4297889768 hasConcept C50670333 @default.
- W4297889768 hasConcept C55493867 @default.