Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297902595> ?p ?o ?g. }
- W4297902595 endingPage "852" @default.
- W4297902595 startingPage "828" @default.
- W4297902595 abstract "• This study considers a distributionally robust portfolio optimization problem with an ambiguous stochastic dominance constraint by assuming the unknown distribution of asset returns. • We propose the worst-case expected return and subject to an ambiguous second- order stochastic dominance constraint. • We use a cutting plane to solve our second-order stochastic dominance constraint portfolio optimization problem with ambiguity sets based on the Wasserstein metric. • It is also shown that the Wasserstein-moment ambiguity set-based distributionally robust portfolio optimization can be reduced to a semidefinite program and second-order conic programming. • We decompose this class of distributionally robust portfolio optimization into semi-infinite programming and apply the cutting surface method to solve it. In portfolio optimization, we may be dealing with misspecification of a known distribution, that stock returns follow it. The unknown true distribution is considered in terms of a Wasserstein-neighborhood of P to examine the tractable formulations of the portfolio selection problem. This study considers a distributionally robust portfolio optimization problem with an ambiguous stochastic dominance constraint by assuming the unknown distribution of asset returns. The objective is to maximize the worst-case expected return and subject to an ambiguous second-order stochastic dominance constraint. The expected return robustly stochastically dominates the benchmark in the second order over all possible distributions within an ambiguity set. It is also shown that the Wasserstein-moment ambiguity set-based distributionally robust portfolio optimization can be reduced to a semidefinite program and second-order conic programming. We use a cutting plane to solve our second-order stochastic dominance constraint portfolio optimization problem with ambiguity sets based on the Wasserstein metric. Then we decompose this class of distributionally robust portfolio optimization into semi-infinite programming and apply the cutting surface method to solve it. The captured optimization programs are applied to real-life data for more efficient comparison. The problems are examined in depth using the optimal solutions of the optimization programs based on the different setups." @default.
- W4297902595 created "2022-10-01" @default.
- W4297902595 creator A5024051441 @default.
- W4297902595 creator A5063808461 @default.
- W4297902595 creator A5075451689 @default.
- W4297902595 date "2022-10-01" @default.
- W4297902595 modified "2023-09-28" @default.
- W4297902595 title "Distributionally robust portfolio optimization with second-order stochastic dominance based on wasserstein metric" @default.
- W4297902595 cites W1873244950 @default.
- W4297902595 cites W1966823320 @default.
- W4297902595 cites W1966986674 @default.
- W4297902595 cites W1968355947 @default.
- W4297902595 cites W1990275757 @default.
- W4297902595 cites W1990989681 @default.
- W4297902595 cites W2009923109 @default.
- W4297902595 cites W2043074138 @default.
- W4297902595 cites W2048133466 @default.
- W4297902595 cites W2067796483 @default.
- W4297902595 cites W2085976800 @default.
- W4297902595 cites W2119303899 @default.
- W4297902595 cites W2125417745 @default.
- W4297902595 cites W2128244396 @default.
- W4297902595 cites W2136197566 @default.
- W4297902595 cites W2339153486 @default.
- W4297902595 cites W2537619949 @default.
- W4297902595 cites W2660893828 @default.
- W4297902595 cites W2793108066 @default.
- W4297902595 cites W2802230683 @default.
- W4297902595 cites W2922418166 @default.
- W4297902595 cites W2963450292 @default.
- W4297902595 cites W3010333602 @default.
- W4297902595 cites W3015953475 @default.
- W4297902595 cites W3016267948 @default.
- W4297902595 cites W3026728987 @default.
- W4297902595 cites W3116590011 @default.
- W4297902595 cites W3122086209 @default.
- W4297902595 cites W3123005068 @default.
- W4297902595 cites W3135924647 @default.
- W4297902595 cites W3150667673 @default.
- W4297902595 cites W3170040015 @default.
- W4297902595 cites W4281606414 @default.
- W4297902595 cites W4288045062 @default.
- W4297902595 doi "https://doi.org/10.1016/j.ins.2022.09.039" @default.
- W4297902595 hasPublicationYear "2022" @default.
- W4297902595 type Work @default.
- W4297902595 citedByCount "7" @default.
- W4297902595 countsByYear W42979025952023 @default.
- W4297902595 crossrefType "journal-article" @default.
- W4297902595 hasAuthorship W4297902595A5024051441 @default.
- W4297902595 hasAuthorship W4297902595A5063808461 @default.
- W4297902595 hasAuthorship W4297902595A5075451689 @default.
- W4297902595 hasConcept C10138342 @default.
- W4297902595 hasConcept C106159729 @default.
- W4297902595 hasConcept C126255220 @default.
- W4297902595 hasConcept C137631369 @default.
- W4297902595 hasConcept C162324750 @default.
- W4297902595 hasConcept C176217482 @default.
- W4297902595 hasConcept C182306322 @default.
- W4297902595 hasConcept C193254401 @default.
- W4297902595 hasConcept C194387892 @default.
- W4297902595 hasConcept C202655437 @default.
- W4297902595 hasConcept C21547014 @default.
- W4297902595 hasConcept C2777634741 @default.
- W4297902595 hasConcept C2780821815 @default.
- W4297902595 hasConcept C28826006 @default.
- W4297902595 hasConcept C33252445 @default.
- W4297902595 hasConcept C33923547 @default.
- W4297902595 hasConcept C41008148 @default.
- W4297902595 hasConceptScore W4297902595C10138342 @default.
- W4297902595 hasConceptScore W4297902595C106159729 @default.
- W4297902595 hasConceptScore W4297902595C126255220 @default.
- W4297902595 hasConceptScore W4297902595C137631369 @default.
- W4297902595 hasConceptScore W4297902595C162324750 @default.
- W4297902595 hasConceptScore W4297902595C176217482 @default.
- W4297902595 hasConceptScore W4297902595C182306322 @default.
- W4297902595 hasConceptScore W4297902595C193254401 @default.
- W4297902595 hasConceptScore W4297902595C194387892 @default.
- W4297902595 hasConceptScore W4297902595C202655437 @default.
- W4297902595 hasConceptScore W4297902595C21547014 @default.
- W4297902595 hasConceptScore W4297902595C2777634741 @default.
- W4297902595 hasConceptScore W4297902595C2780821815 @default.
- W4297902595 hasConceptScore W4297902595C28826006 @default.
- W4297902595 hasConceptScore W4297902595C33252445 @default.
- W4297902595 hasConceptScore W4297902595C33923547 @default.
- W4297902595 hasConceptScore W4297902595C41008148 @default.
- W4297902595 hasLocation W42979025951 @default.
- W4297902595 hasOpenAccess W4297902595 @default.
- W4297902595 hasPrimaryLocation W42979025951 @default.
- W4297902595 hasRelatedWork W1984862813 @default.
- W4297902595 hasRelatedWork W2083996107 @default.
- W4297902595 hasRelatedWork W2339153486 @default.
- W4297902595 hasRelatedWork W2802230683 @default.
- W4297902595 hasRelatedWork W3017736765 @default.
- W4297902595 hasRelatedWork W3212504317 @default.
- W4297902595 hasRelatedWork W4220725621 @default.
- W4297902595 hasRelatedWork W4286859058 @default.
- W4297902595 hasRelatedWork W4297902595 @default.
- W4297902595 hasRelatedWork W2552756754 @default.