Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297909613> ?p ?o ?g. }
- W4297909613 endingPage "108835" @default.
- W4297909613 startingPage "108835" @default.
- W4297909613 abstract "Saltmarsh plants are important components of estuarine and coastal wetlands because they regulate ecosystem nitrogen (N) dynamics. However, complex interactions between the N uptake of saltmarsh plants and soil N transformation remain unclear. Here, we conducted a series of 15 N tracing experiments with native Phragmites australis , invasive Spartina alterniflora , and bulk sediment without plants to explore the effect of plants on soil N cycling. The results showed that the NH 4 + and NO 3 − uptake rates by the saltmarsh plants were 4.62–5.38 mg N kg⁻ 1 d⁻ 1 and 1.29–2.90 mg N kg⁻ 1 d⁻ 1 , respectively, and the invasive S. alterniflora had a higher N uptake than the native P. australis . The presence of saltmarsh plants promoted N mineralization and dissimilatory NO 3 − reduction to NH 4 + , increasing the available NH 4 + supply for the plants. Conversely, NH 4 + immobilization and autotrophic nitrification rates were drastically reduced in the presence of the saltmarsh plants, indicating that the plants were able to outcompete soil microorganisms in NH 4 + acquisition. Meanwhile, heterotrophic nitrification (organic N oxidation), which accounted for 66–82% of the total nitrification, was stimulated by the saltmarsh plants. Increased heterotrophic nitrification in the saltmarsh plants helped to provide NO 3 − substrates to meet the needs of the soil microorganisms and the plants. The regulatory effect of the invasive S. alterniflora on soil gross N transformation was more pronounced than that of the native P. australis due to the higher N requirements of the former. Microbial carbon sources and energy sources, relevant gene abundances and exoenzyme activities were the main factors by which the saltmarsh plants regulated gross N transformations. Overall, our results show that there are various interactions between soil microorganisms and saltmarsh plants and that S. alterniflora accelerates gross N transformations in the soil to meet its large demand for N. These findings provide valuable insights into the ecological management of invasive plants in estuarine and coastal ecosystems. • Interactions between saltmarsh plants' N uptake and soil N transformations were observed. • N mineralization was stimulated but NH 4 + immobilization was restricted by the presence of saltmarsh plants. • Plants increased heterotrophic nitrification to improve NO 3 − availability when autotrophic nitrification was limited. • The regulation effect of invasive S. alterniflora on gross N transformations was more pronounced than native P. australis ." @default.
- W4297909613 created "2022-10-01" @default.
- W4297909613 creator A5001318956 @default.
- W4297909613 creator A5017353282 @default.
- W4297909613 creator A5025270532 @default.
- W4297909613 creator A5027034753 @default.
- W4297909613 creator A5031307505 @default.
- W4297909613 creator A5033487539 @default.
- W4297909613 creator A5063415414 @default.
- W4297909613 creator A5066814965 @default.
- W4297909613 creator A5069030931 @default.
- W4297909613 creator A5076236809 @default.
- W4297909613 creator A5089736720 @default.
- W4297909613 creator A5089928436 @default.
- W4297909613 date "2022-11-01" @default.
- W4297909613 modified "2023-10-16" @default.
- W4297909613 title "Invasive Spartina alterniflora accelerates soil gross nitrogen transformations to optimize its nitrogen acquisition in an estuarine and coastal wetland of China" @default.
- W4297909613 cites W1597278782 @default.
- W4297909613 cites W1883692314 @default.
- W4297909613 cites W1912524554 @default.
- W4297909613 cites W1978371046 @default.
- W4297909613 cites W1978794708 @default.
- W4297909613 cites W1979417303 @default.
- W4297909613 cites W1979528240 @default.
- W4297909613 cites W1981828758 @default.
- W4297909613 cites W1984914485 @default.
- W4297909613 cites W2004256739 @default.
- W4297909613 cites W2006882448 @default.
- W4297909613 cites W2016014871 @default.
- W4297909613 cites W2017061951 @default.
- W4297909613 cites W2019056784 @default.
- W4297909613 cites W2019222503 @default.
- W4297909613 cites W2030340644 @default.
- W4297909613 cites W2037694688 @default.
- W4297909613 cites W2039549658 @default.
- W4297909613 cites W2040682725 @default.
- W4297909613 cites W2047655091 @default.
- W4297909613 cites W2048851157 @default.
- W4297909613 cites W2052596485 @default.
- W4297909613 cites W2065657242 @default.
- W4297909613 cites W2066056808 @default.
- W4297909613 cites W2069270601 @default.
- W4297909613 cites W2075879843 @default.
- W4297909613 cites W2080062580 @default.
- W4297909613 cites W2089060455 @default.
- W4297909613 cites W2089646396 @default.
- W4297909613 cites W2092101521 @default.
- W4297909613 cites W2111602906 @default.
- W4297909613 cites W2112033426 @default.
- W4297909613 cites W2120718111 @default.
- W4297909613 cites W2121383114 @default.
- W4297909613 cites W2131922750 @default.
- W4297909613 cites W2135160858 @default.
- W4297909613 cites W2136963468 @default.
- W4297909613 cites W2140549890 @default.
- W4297909613 cites W2157994386 @default.
- W4297909613 cites W2160936823 @default.
- W4297909613 cites W2162794828 @default.
- W4297909613 cites W2166615507 @default.
- W4297909613 cites W2176354192 @default.
- W4297909613 cites W2279191206 @default.
- W4297909613 cites W2424527025 @default.
- W4297909613 cites W2480254816 @default.
- W4297909613 cites W2608313553 @default.
- W4297909613 cites W2622233975 @default.
- W4297909613 cites W2622340452 @default.
- W4297909613 cites W2625753588 @default.
- W4297909613 cites W2626782127 @default.
- W4297909613 cites W2724741097 @default.
- W4297909613 cites W2756471603 @default.
- W4297909613 cites W2765615498 @default.
- W4297909613 cites W2789900838 @default.
- W4297909613 cites W2794083035 @default.
- W4297909613 cites W2809332648 @default.
- W4297909613 cites W2907796786 @default.
- W4297909613 cites W2947798804 @default.
- W4297909613 cites W2954495840 @default.
- W4297909613 cites W2976430345 @default.
- W4297909613 cites W2986970438 @default.
- W4297909613 cites W3035852562 @default.
- W4297909613 cites W3039825134 @default.
- W4297909613 cites W3113318269 @default.
- W4297909613 cites W3126275837 @default.
- W4297909613 cites W3145380911 @default.
- W4297909613 cites W3158317715 @default.
- W4297909613 cites W3181076759 @default.
- W4297909613 cites W4200486479 @default.
- W4297909613 cites W4225157410 @default.
- W4297909613 cites W4280592757 @default.
- W4297909613 doi "https://doi.org/10.1016/j.soilbio.2022.108835" @default.
- W4297909613 hasPublicationYear "2022" @default.
- W4297909613 type Work @default.
- W4297909613 citedByCount "3" @default.
- W4297909613 countsByYear W42979096132023 @default.
- W4297909613 crossrefType "journal-article" @default.
- W4297909613 hasAuthorship W4297909613A5001318956 @default.
- W4297909613 hasAuthorship W4297909613A5017353282 @default.
- W4297909613 hasAuthorship W4297909613A5025270532 @default.