Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297916251> ?p ?o ?g. }
- W4297916251 abstract "Abstract The X-ray micro-Computed Tomography (μ-CT) is the primary tool for digital rock imaging, which provides the foundation for numerically studying petrophysical properties of reservoir rocks at the pore scale. However, the finite resolution of μ-CT imaging cannot capture the micro-porosity at the sub-micrometer scale in carbonate rocks. The tradeoff between the resolution and field of view (FOV) is a persisting challenge in the industry. The machine-learning-based single-image super-resolution techniques has rapidly developed in the past few years. It is becoming a promising approach to super-resolve low-resolution carbonate rock images. In this study, we present a fast super-resolution generative adversarial network to enhance the image resolution of carbonate rocks. A pre-trained VGG network is implemented to extract important high-level features, from which the perceptual similarity is evaluated between the generated and ground-truth images. The novelty of this study is two-fold. First, the generator is significantly simplified with a fast super-resolution convolutional neural network. On the other hand, the spatial and channel squeeze-and excitation block is applied to recalibrate nonlinear feature mapping so that the quality of super-resolved images is promising even with much fewer residual blocks. To quantify the quality of the super-resolution images, we compare difference maps between the generated and ground-truth images. Numerical results indicate that the proposed network shows excellent potential in enhancing the resolution of heterogeneous carbonate rocks. In particular, the pixel errors are minor, and the super-resolution images exhibit clear and sharp edges and dissolved mineral texture. This study provides a novel machine-learning-based method using a simple generative adversarial network with squeeze and excitation blocks to super-resolve μ-CT images of carbonate rocks." @default.
- W4297916251 created "2022-10-01" @default.
- W4297916251 creator A5009325358 @default.
- W4297916251 creator A5009674104 @default.
- W4297916251 creator A5045839676 @default.
- W4297916251 creator A5067974945 @default.
- W4297916251 creator A5072179993 @default.
- W4297916251 creator A5084996089 @default.
- W4297916251 date "2022-09-26" @default.
- W4297916251 modified "2023-10-18" @default.
- W4297916251 title "Multiscale Carbonate Rock Reconstruction Using a Hybrid WGAN-GP and Super-Resolution" @default.
- W4297916251 cites W1885185971 @default.
- W4297916251 cites W1980447427 @default.
- W4297916251 cites W2014947933 @default.
- W4297916251 cites W2016312983 @default.
- W4297916251 cites W2042650924 @default.
- W4297916251 cites W2331128040 @default.
- W4297916251 cites W2503339013 @default.
- W4297916251 cites W2606759614 @default.
- W4297916251 cites W2752782242 @default.
- W4297916251 cites W2888493720 @default.
- W4297916251 cites W2891158090 @default.
- W4297916251 cites W2899002341 @default.
- W4297916251 cites W2911268982 @default.
- W4297916251 cites W2937843000 @default.
- W4297916251 cites W2963372104 @default.
- W4297916251 cites W2963470893 @default.
- W4297916251 cites W2986037633 @default.
- W4297916251 cites W2995181850 @default.
- W4297916251 cites W3000194204 @default.
- W4297916251 cites W3003386376 @default.
- W4297916251 cites W3012889474 @default.
- W4297916251 cites W3080440933 @default.
- W4297916251 cites W3088281185 @default.
- W4297916251 cites W3103067313 @default.
- W4297916251 cites W3115423743 @default.
- W4297916251 cites W3163452734 @default.
- W4297916251 cites W3172838060 @default.
- W4297916251 cites W3200162704 @default.
- W4297916251 cites W3201485852 @default.
- W4297916251 cites W3207047754 @default.
- W4297916251 cites W3207234277 @default.
- W4297916251 cites W4213173572 @default.
- W4297916251 cites W4213276003 @default.
- W4297916251 cites W4213369308 @default.
- W4297916251 cites W4285212076 @default.
- W4297916251 doi "https://doi.org/10.2118/210461-ms" @default.
- W4297916251 hasPublicationYear "2022" @default.
- W4297916251 type Work @default.
- W4297916251 citedByCount "3" @default.
- W4297916251 countsByYear W42979162512022 @default.
- W4297916251 countsByYear W42979162512023 @default.
- W4297916251 crossrefType "proceedings-article" @default.
- W4297916251 hasAuthorship W4297916251A5009325358 @default.
- W4297916251 hasAuthorship W4297916251A5009674104 @default.
- W4297916251 hasAuthorship W4297916251A5045839676 @default.
- W4297916251 hasAuthorship W4297916251A5067974945 @default.
- W4297916251 hasAuthorship W4297916251A5072179993 @default.
- W4297916251 hasAuthorship W4297916251A5084996089 @default.
- W4297916251 hasConcept C127313418 @default.
- W4297916251 hasConcept C138885662 @default.
- W4297916251 hasConcept C146849305 @default.
- W4297916251 hasConcept C153180895 @default.
- W4297916251 hasConcept C154945302 @default.
- W4297916251 hasConcept C160633673 @default.
- W4297916251 hasConcept C187320778 @default.
- W4297916251 hasConcept C191897082 @default.
- W4297916251 hasConcept C192562407 @default.
- W4297916251 hasConcept C19320362 @default.
- W4297916251 hasConcept C205372480 @default.
- W4297916251 hasConcept C2776401178 @default.
- W4297916251 hasConcept C2780659211 @default.
- W4297916251 hasConcept C31972630 @default.
- W4297916251 hasConcept C41008148 @default.
- W4297916251 hasConcept C41895202 @default.
- W4297916251 hasConcept C46293882 @default.
- W4297916251 hasConcept C62649853 @default.
- W4297916251 hasConcept C6648577 @default.
- W4297916251 hasConcept C81363708 @default.
- W4297916251 hasConceptScore W4297916251C127313418 @default.
- W4297916251 hasConceptScore W4297916251C138885662 @default.
- W4297916251 hasConceptScore W4297916251C146849305 @default.
- W4297916251 hasConceptScore W4297916251C153180895 @default.
- W4297916251 hasConceptScore W4297916251C154945302 @default.
- W4297916251 hasConceptScore W4297916251C160633673 @default.
- W4297916251 hasConceptScore W4297916251C187320778 @default.
- W4297916251 hasConceptScore W4297916251C191897082 @default.
- W4297916251 hasConceptScore W4297916251C192562407 @default.
- W4297916251 hasConceptScore W4297916251C19320362 @default.
- W4297916251 hasConceptScore W4297916251C205372480 @default.
- W4297916251 hasConceptScore W4297916251C2776401178 @default.
- W4297916251 hasConceptScore W4297916251C2780659211 @default.
- W4297916251 hasConceptScore W4297916251C31972630 @default.
- W4297916251 hasConceptScore W4297916251C41008148 @default.
- W4297916251 hasConceptScore W4297916251C41895202 @default.
- W4297916251 hasConceptScore W4297916251C46293882 @default.
- W4297916251 hasConceptScore W4297916251C62649853 @default.
- W4297916251 hasConceptScore W4297916251C6648577 @default.
- W4297916251 hasConceptScore W4297916251C81363708 @default.
- W4297916251 hasLocation W42979162511 @default.