Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297916385> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4297916385 abstract "Abstract Geologic CO2 sequestration (GCS) has been considered a viable engineering measure to decrease global CO2 emissions. The real-time monitoring to detect possible CO2 leakage is an important part of big-scale GCS deployment. In this work, we introduce a deep-learning-based algorithm using a hybrid neural network for detecting CO2 leakage based on bottom-hole pressure measurements. The proposed workflow includes the generation of train-validation samples, the coupling process of training-validating, and the model evaluation. This work solves the diffusivity equation for pressure within a simulation framework, used to generate datasets under no-leakage conditions. A Bayesian optimization process is performed to optimize the model hyperparameters. We test the performance of the hybrid neural network, referred to as Convolutional Neural Network (CNN) and Bi-directional Long Short-Term Memory (CNN-BiLSTM) on the bottom-hole pressure data collected from CO2 leakage simulations. Results show that the CNN-BiLSTM model can successfully detect CO2 leakage events by comparing the difference between the predicted (no leakage) and tested bottom-hole pressures. We further compare its superiority with Convolutional Neural Network (CNN), Long Short-term Memory (LSTM), Bidirectional Long Short-term Memory (BiLSTM), and CNN-LSTM. Our proposed model achieves the highest accuracy with the same datasets. The CNN-BiLSTM outperforms other models owing to 1) its capacity to process image-based input, which could accurately capture input formation, especially in cases with highly heterogeneous permeability; 2) its bidirectional ability to capture time-series dependency. Other models, like LSTM and BiLSTM, take value-based input, which is insufficient to describe the input information in highly heterogeneous cases. In contrast, the CNN model suffers from capturing the temporal dependency features. This approach provides an efficient and practical CO2 leakage detection method and can be implemented in large-scale GCS for real-time monitoring applications." @default.
- W4297916385 created "2022-10-01" @default.
- W4297916385 creator A5009325358 @default.
- W4297916385 creator A5009674104 @default.
- W4297916385 creator A5045839676 @default.
- W4297916385 creator A5067974945 @default.
- W4297916385 creator A5072179993 @default.
- W4297916385 creator A5084996089 @default.
- W4297916385 date "2022-09-26" @default.
- W4297916385 modified "2023-10-18" @default.
- W4297916385 title "Deep Learning Model for CO2 Leakage Detection Using Pressure Measurements" @default.
- W4297916385 cites W1897653255 @default.
- W4297916385 cites W2064675550 @default.
- W4297916385 cites W2286339604 @default.
- W4297916385 cites W2530018583 @default.
- W4297916385 cites W2792000907 @default.
- W4297916385 cites W2803396148 @default.
- W4297916385 cites W2926965191 @default.
- W4297916385 cites W2962687119 @default.
- W4297916385 cites W2966931306 @default.
- W4297916385 cites W2967253021 @default.
- W4297916385 cites W2986037633 @default.
- W4297916385 cites W3000194204 @default.
- W4297916385 cites W3092871801 @default.
- W4297916385 cites W3095182156 @default.
- W4297916385 cites W3124640783 @default.
- W4297916385 cites W3135530127 @default.
- W4297916385 cites W3157423656 @default.
- W4297916385 cites W3158866033 @default.
- W4297916385 cites W3200162704 @default.
- W4297916385 cites W3201485852 @default.
- W4297916385 cites W3207047754 @default.
- W4297916385 cites W3207234277 @default.
- W4297916385 cites W3212115482 @default.
- W4297916385 cites W4200316594 @default.
- W4297916385 cites W4213173572 @default.
- W4297916385 cites W4213276003 @default.
- W4297916385 cites W4213369308 @default.
- W4297916385 cites W4223938713 @default.
- W4297916385 cites W4224925581 @default.
- W4297916385 cites W4282032368 @default.
- W4297916385 cites W4285212076 @default.
- W4297916385 doi "https://doi.org/10.2118/209959-ms" @default.
- W4297916385 hasPublicationYear "2022" @default.
- W4297916385 type Work @default.
- W4297916385 citedByCount "5" @default.
- W4297916385 countsByYear W42979163852022 @default.
- W4297916385 countsByYear W42979163852023 @default.
- W4297916385 crossrefType "proceedings-article" @default.
- W4297916385 hasAuthorship W4297916385A5009325358 @default.
- W4297916385 hasAuthorship W4297916385A5009674104 @default.
- W4297916385 hasAuthorship W4297916385A5045839676 @default.
- W4297916385 hasAuthorship W4297916385A5067974945 @default.
- W4297916385 hasAuthorship W4297916385A5072179993 @default.
- W4297916385 hasAuthorship W4297916385A5084996089 @default.
- W4297916385 hasConcept C108583219 @default.
- W4297916385 hasConcept C119857082 @default.
- W4297916385 hasConcept C139719470 @default.
- W4297916385 hasConcept C153180895 @default.
- W4297916385 hasConcept C154945302 @default.
- W4297916385 hasConcept C162324750 @default.
- W4297916385 hasConcept C177212765 @default.
- W4297916385 hasConcept C2777042071 @default.
- W4297916385 hasConcept C41008148 @default.
- W4297916385 hasConcept C50644808 @default.
- W4297916385 hasConcept C77088390 @default.
- W4297916385 hasConcept C81363708 @default.
- W4297916385 hasConcept C8642999 @default.
- W4297916385 hasConceptScore W4297916385C108583219 @default.
- W4297916385 hasConceptScore W4297916385C119857082 @default.
- W4297916385 hasConceptScore W4297916385C139719470 @default.
- W4297916385 hasConceptScore W4297916385C153180895 @default.
- W4297916385 hasConceptScore W4297916385C154945302 @default.
- W4297916385 hasConceptScore W4297916385C162324750 @default.
- W4297916385 hasConceptScore W4297916385C177212765 @default.
- W4297916385 hasConceptScore W4297916385C2777042071 @default.
- W4297916385 hasConceptScore W4297916385C41008148 @default.
- W4297916385 hasConceptScore W4297916385C50644808 @default.
- W4297916385 hasConceptScore W4297916385C77088390 @default.
- W4297916385 hasConceptScore W4297916385C81363708 @default.
- W4297916385 hasConceptScore W4297916385C8642999 @default.
- W4297916385 hasLocation W42979163851 @default.
- W4297916385 hasOpenAccess W4297916385 @default.
- W4297916385 hasPrimaryLocation W42979163851 @default.
- W4297916385 hasRelatedWork W2732542196 @default.
- W4297916385 hasRelatedWork W2738221750 @default.
- W4297916385 hasRelatedWork W3130227562 @default.
- W4297916385 hasRelatedWork W3206248117 @default.
- W4297916385 hasRelatedWork W4295309597 @default.
- W4297916385 hasRelatedWork W4304182771 @default.
- W4297916385 hasRelatedWork W4309113015 @default.
- W4297916385 hasRelatedWork W4311257506 @default.
- W4297916385 hasRelatedWork W4327499916 @default.
- W4297916385 hasRelatedWork W564581980 @default.
- W4297916385 isParatext "false" @default.
- W4297916385 isRetracted "false" @default.
- W4297916385 workType "article" @default.