Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297922480> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4297922480 abstract "The notion of meta-mining has appeared recently and extends the traditional meta-learning in two ways. First it does not learn meta-models that provide support only for the learning algorithm selection task but ones that support the whole data-mining process. In addition it abandons the so called black-box approach to algorithm description followed in meta-learning. Now in addition to the datasets, algorithms also have descriptors, workflows as well. For the latter two these descriptions are semantic, describing properties of the algorithms. With the availability of descriptors both for datasets and data mining workflows the traditional modelling techniques followed in meta-learning, typically based on classification and regression algorithms, are no longer appropriate. Instead we are faced with a problem the nature of which is much more similar to the problems that appear in recommendation systems. The most important meta-mining requirements are that suggestions should use only datasets and workflows descriptors and the cold-start problem, e.g. providing workflow suggestions for new datasets. In this paper we take a different view on the meta-mining modelling problem and treat it as a recommender problem. In order to account for the meta-mining specificities we derive a novel metric-based-learning recommender approach. Our method learns two homogeneous metrics, one in the dataset and one in the workflow space, and a heterogeneous one in the dataset-workflow space. All learned metrics reflect similarities established from the dataset-workflow preference matrix. We demonstrate our method on meta-mining over biological (microarray datasets) problems. The application of our method is not limited to the meta-mining problem, its formulations is general enough so that it can be applied on problems with similar requirements." @default.
- W4297922480 created "2022-10-01" @default.
- W4297922480 creator A5030197858 @default.
- W4297922480 creator A5034196019 @default.
- W4297922480 creator A5042241049 @default.
- W4297922480 creator A5084831490 @default.
- W4297922480 date "2012-10-04" @default.
- W4297922480 modified "2023-10-16" @default.
- W4297922480 title "Learning Heterogeneous Similarity Measures for Hybrid-Recommendations in Meta-Mining" @default.
- W4297922480 doi "https://doi.org/10.48550/arxiv.1210.1317" @default.
- W4297922480 hasPublicationYear "2012" @default.
- W4297922480 type Work @default.
- W4297922480 citedByCount "0" @default.
- W4297922480 crossrefType "posted-content" @default.
- W4297922480 hasAuthorship W4297922480A5030197858 @default.
- W4297922480 hasAuthorship W4297922480A5034196019 @default.
- W4297922480 hasAuthorship W4297922480A5042241049 @default.
- W4297922480 hasAuthorship W4297922480A5084831490 @default.
- W4297922480 hasBestOaLocation W42979224801 @default.
- W4297922480 hasConcept C103278499 @default.
- W4297922480 hasConcept C111919701 @default.
- W4297922480 hasConcept C115961682 @default.
- W4297922480 hasConcept C119857082 @default.
- W4297922480 hasConcept C124101348 @default.
- W4297922480 hasConcept C154945302 @default.
- W4297922480 hasConcept C162324750 @default.
- W4297922480 hasConcept C176217482 @default.
- W4297922480 hasConcept C177212765 @default.
- W4297922480 hasConcept C187736073 @default.
- W4297922480 hasConcept C21547014 @default.
- W4297922480 hasConcept C2780451532 @default.
- W4297922480 hasConcept C2781002164 @default.
- W4297922480 hasConcept C41008148 @default.
- W4297922480 hasConcept C557471498 @default.
- W4297922480 hasConcept C77088390 @default.
- W4297922480 hasConcept C98045186 @default.
- W4297922480 hasConceptScore W4297922480C103278499 @default.
- W4297922480 hasConceptScore W4297922480C111919701 @default.
- W4297922480 hasConceptScore W4297922480C115961682 @default.
- W4297922480 hasConceptScore W4297922480C119857082 @default.
- W4297922480 hasConceptScore W4297922480C124101348 @default.
- W4297922480 hasConceptScore W4297922480C154945302 @default.
- W4297922480 hasConceptScore W4297922480C162324750 @default.
- W4297922480 hasConceptScore W4297922480C176217482 @default.
- W4297922480 hasConceptScore W4297922480C177212765 @default.
- W4297922480 hasConceptScore W4297922480C187736073 @default.
- W4297922480 hasConceptScore W4297922480C21547014 @default.
- W4297922480 hasConceptScore W4297922480C2780451532 @default.
- W4297922480 hasConceptScore W4297922480C2781002164 @default.
- W4297922480 hasConceptScore W4297922480C41008148 @default.
- W4297922480 hasConceptScore W4297922480C557471498 @default.
- W4297922480 hasConceptScore W4297922480C77088390 @default.
- W4297922480 hasConceptScore W4297922480C98045186 @default.
- W4297922480 hasLocation W42979224801 @default.
- W4297922480 hasLocation W42979224802 @default.
- W4297922480 hasLocation W42979224803 @default.
- W4297922480 hasLocation W42979224804 @default.
- W4297922480 hasOpenAccess W4297922480 @default.
- W4297922480 hasPrimaryLocation W42979224801 @default.
- W4297922480 hasRelatedWork W1969932894 @default.
- W4297922480 hasRelatedWork W2067738930 @default.
- W4297922480 hasRelatedWork W2348159088 @default.
- W4297922480 hasRelatedWork W2406205719 @default.
- W4297922480 hasRelatedWork W2778446292 @default.
- W4297922480 hasRelatedWork W2795913521 @default.
- W4297922480 hasRelatedWork W2893089803 @default.
- W4297922480 hasRelatedWork W3200361725 @default.
- W4297922480 hasRelatedWork W41165127 @default.
- W4297922480 hasRelatedWork W4311183411 @default.
- W4297922480 isParatext "false" @default.
- W4297922480 isRetracted "false" @default.
- W4297922480 workType "article" @default.