Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297968956> ?p ?o ?g. }
- W4297968956 endingPage "711" @default.
- W4297968956 startingPage "681" @default.
- W4297968956 abstract "Abstract We consider predictions in longitudinal studies, and investigate the well known statistical mixed-effects model, piecewise linear mixed-effects model and six different popular machine learning approaches: decision trees, bagging, random forest, boosting, support-vector machine and neural network. In order to consider the correlated data in machine learning, the random effects is combined into the traditional tree methods and random forest. Our focus is the performance of statistical modelling and machine learning especially in the cases of the misspecification of the fixed effects and the random effects. Extensive simulation studies have been carried out to evaluate the performance using a number of criteria. Two real datasets from longitudinal studies are analysed to demonstrate our findings. The R code and dataset are freely available at https://github.com/shuwen92/MEML ." @default.
- W4297968956 created "2022-10-01" @default.
- W4297968956 creator A5045233052 @default.
- W4297968956 creator A5057413553 @default.
- W4297968956 creator A5070517866 @default.
- W4297968956 creator A5073924559 @default.
- W4297968956 date "2022-09-29" @default.
- W4297968956 modified "2023-10-14" @default.
- W4297968956 title "Predictions of machine learning with mixed-effects in analyzing longitudinal data under model misspecification" @default.
- W4297968956 cites W1587682423 @default.
- W4297968956 cites W1782242389 @default.
- W4297968956 cites W1857560888 @default.
- W4297968956 cites W1965237574 @default.
- W4297968956 cites W1967220704 @default.
- W4297968956 cites W1984622488 @default.
- W4297968956 cites W1996215710 @default.
- W4297968956 cites W2006353560 @default.
- W4297968956 cites W2016603580 @default.
- W4297968956 cites W2027284348 @default.
- W4297968956 cites W2031693516 @default.
- W4297968956 cites W2031844781 @default.
- W4297968956 cites W2060551910 @default.
- W4297968956 cites W2082246284 @default.
- W4297968956 cites W2085020267 @default.
- W4297968956 cites W2110374496 @default.
- W4297968956 cites W2160616692 @default.
- W4297968956 cites W2212989137 @default.
- W4297968956 cites W2330244526 @default.
- W4297968956 cites W2471498685 @default.
- W4297968956 cites W2487770199 @default.
- W4297968956 cites W2594563067 @default.
- W4297968956 cites W2890256689 @default.
- W4297968956 cites W2911964244 @default.
- W4297968956 cites W2935986185 @default.
- W4297968956 cites W2951487696 @default.
- W4297968956 cites W2963530216 @default.
- W4297968956 cites W3012155760 @default.
- W4297968956 cites W3017371728 @default.
- W4297968956 cites W3100196413 @default.
- W4297968956 cites W3103169725 @default.
- W4297968956 cites W3105262881 @default.
- W4297968956 cites W3106377951 @default.
- W4297968956 cites W3132469662 @default.
- W4297968956 cites W3133584557 @default.
- W4297968956 cites W4206439534 @default.
- W4297968956 cites W94052953 @default.
- W4297968956 doi "https://doi.org/10.1007/s10260-022-00658-x" @default.
- W4297968956 hasPublicationYear "2022" @default.
- W4297968956 type Work @default.
- W4297968956 citedByCount "0" @default.
- W4297968956 crossrefType "journal-article" @default.
- W4297968956 hasAuthorship W4297968956A5045233052 @default.
- W4297968956 hasAuthorship W4297968956A5057413553 @default.
- W4297968956 hasAuthorship W4297968956A5070517866 @default.
- W4297968956 hasAuthorship W4297968956A5073924559 @default.
- W4297968956 hasBestOaLocation W42979689561 @default.
- W4297968956 hasConcept C119857082 @default.
- W4297968956 hasConcept C12267149 @default.
- W4297968956 hasConcept C124101348 @default.
- W4297968956 hasConcept C126322002 @default.
- W4297968956 hasConcept C154945302 @default.
- W4297968956 hasConcept C16012445 @default.
- W4297968956 hasConcept C168743327 @default.
- W4297968956 hasConcept C169258074 @default.
- W4297968956 hasConcept C41008148 @default.
- W4297968956 hasConcept C46686674 @default.
- W4297968956 hasConcept C50644808 @default.
- W4297968956 hasConcept C71924100 @default.
- W4297968956 hasConcept C84525736 @default.
- W4297968956 hasConcept C95190672 @default.
- W4297968956 hasConceptScore W4297968956C119857082 @default.
- W4297968956 hasConceptScore W4297968956C12267149 @default.
- W4297968956 hasConceptScore W4297968956C124101348 @default.
- W4297968956 hasConceptScore W4297968956C126322002 @default.
- W4297968956 hasConceptScore W4297968956C154945302 @default.
- W4297968956 hasConceptScore W4297968956C16012445 @default.
- W4297968956 hasConceptScore W4297968956C168743327 @default.
- W4297968956 hasConceptScore W4297968956C169258074 @default.
- W4297968956 hasConceptScore W4297968956C41008148 @default.
- W4297968956 hasConceptScore W4297968956C46686674 @default.
- W4297968956 hasConceptScore W4297968956C50644808 @default.
- W4297968956 hasConceptScore W4297968956C71924100 @default.
- W4297968956 hasConceptScore W4297968956C84525736 @default.
- W4297968956 hasConceptScore W4297968956C95190672 @default.
- W4297968956 hasFunder F4320337111 @default.
- W4297968956 hasFunder F4320338184 @default.
- W4297968956 hasIssue "2" @default.
- W4297968956 hasLocation W42979689561 @default.
- W4297968956 hasOpenAccess W4297968956 @default.
- W4297968956 hasPrimaryLocation W42979689561 @default.
- W4297968956 hasRelatedWork W1996541855 @default.
- W4297968956 hasRelatedWork W3100297620 @default.
- W4297968956 hasRelatedWork W3195168932 @default.
- W4297968956 hasRelatedWork W4296081764 @default.
- W4297968956 hasRelatedWork W4319718059 @default.
- W4297968956 hasRelatedWork W4321636153 @default.
- W4297968956 hasRelatedWork W4377964522 @default.
- W4297968956 hasRelatedWork W4383535405 @default.