Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297973310> ?p ?o ?g. }
- W4297973310 endingPage "22" @default.
- W4297973310 startingPage "1" @default.
- W4297973310 abstract "The compressors used in today’s natural gas production industry have an essential role in maintaining the production line operational. Each of the compressors’ components has routine maintenance tasks to avoid sudden failures. Hence, the significant advantages and benefits of performing preventative maintenance tasks in time are decreasing equipment downtime, saving additional costs, and improving the safety and reliability of the whole system. In this paper, anomaly classification and detection methods based on a neural network hybrid model named Long Short-Term Memory (LSTM)-Autoencoder (AE) is proposed to detect anomalies in sequence pattern of audio data, collected by multiple sound sensors deployed at different components of each compressor system for predictive maintenance. In research methodology, this paper has conducted experiments that employed different RNN architectures such as GRU, LSTM, Stacked LSTM, and Stacked GRU with various functions to create a baseline for model evaluation. Each architecture used audio signals dataset received from the compressor system for experiments to consider each neural network model’s performance. According to performance results, an optimal model for anomaly detection with the best performance scores has been proposed in this research. Experiments combined one-dimensional raw audio signal features using SC and Mel spectrogram features were fed to deep learning models to evaluate performance. Hence, such hybrid methods can effectively detect normal and anomaly audio signals collected from a compressor system, increasing the compressor system’s reliability and the sustainability of the gas production line. The combination of multiple-resource features in the proposed hybrid model showed a 100% score in all four-evaluation metrics such as accuracy, precision, recall, and F1 in LSTM-based autoencoder in both test and train results." @default.
- W4297973310 created "2022-10-01" @default.
- W4297973310 creator A5017947172 @default.
- W4297973310 creator A5020429811 @default.
- W4297973310 creator A5021178616 @default.
- W4297973310 creator A5028437800 @default.
- W4297973310 date "2022-09-29" @default.
- W4297973310 modified "2023-10-14" @default.
- W4297973310 title "An LSTM-Autoencoder Architecture for Anomaly Detection Applied on Compressors Audio Data" @default.
- W4297973310 cites W119403003 @default.
- W4297973310 cites W1544274373 @default.
- W4297973310 cites W1992641321 @default.
- W4297973310 cites W1995443851 @default.
- W4297973310 cites W2007182403 @default.
- W4297973310 cites W2052384514 @default.
- W4297973310 cites W2160291822 @default.
- W4297973310 cites W2194775991 @default.
- W4297973310 cites W2331820705 @default.
- W4297973310 cites W2592676589 @default.
- W4297973310 cites W2610314771 @default.
- W4297973310 cites W2736632770 @default.
- W4297973310 cites W2798056406 @default.
- W4297973310 cites W2899787752 @default.
- W4297973310 cites W2900438754 @default.
- W4297973310 cites W2903360172 @default.
- W4297973310 cites W2906498146 @default.
- W4297973310 cites W2911331613 @default.
- W4297973310 cites W2920083100 @default.
- W4297973310 cites W2965470424 @default.
- W4297973310 cites W2969646944 @default.
- W4297973310 cites W2970453541 @default.
- W4297973310 cites W2975867066 @default.
- W4297973310 cites W2981840673 @default.
- W4297973310 cites W2984027397 @default.
- W4297973310 cites W2988968426 @default.
- W4297973310 cites W2995357020 @default.
- W4297973310 cites W2999107571 @default.
- W4297973310 cites W3003242261 @default.
- W4297973310 cites W3004246420 @default.
- W4297973310 cites W3008578055 @default.
- W4297973310 cites W3012082538 @default.
- W4297973310 cites W3090661556 @default.
- W4297973310 cites W3092267918 @default.
- W4297973310 cites W3096504063 @default.
- W4297973310 cites W3098759121 @default.
- W4297973310 cites W3109037541 @default.
- W4297973310 cites W3115990662 @default.
- W4297973310 cites W3116554004 @default.
- W4297973310 cites W3126336684 @default.
- W4297973310 cites W3128544069 @default.
- W4297973310 cites W3130493457 @default.
- W4297973310 cites W3131886871 @default.
- W4297973310 cites W3133759402 @default.
- W4297973310 cites W3133852419 @default.
- W4297973310 cites W3136896197 @default.
- W4297973310 cites W3137274716 @default.
- W4297973310 cites W3157818903 @default.
- W4297973310 cites W3163549940 @default.
- W4297973310 cites W3168983716 @default.
- W4297973310 cites W3174067623 @default.
- W4297973310 cites W3174264689 @default.
- W4297973310 cites W3185619636 @default.
- W4297973310 cites W3216583535 @default.
- W4297973310 cites W4248937421 @default.
- W4297973310 cites W4249723087 @default.
- W4297973310 doi "https://doi.org/10.1155/2022/3622426" @default.
- W4297973310 hasPublicationYear "2022" @default.
- W4297973310 type Work @default.
- W4297973310 citedByCount "0" @default.
- W4297973310 crossrefType "journal-article" @default.
- W4297973310 hasAuthorship W4297973310A5017947172 @default.
- W4297973310 hasAuthorship W4297973310A5020429811 @default.
- W4297973310 hasAuthorship W4297973310A5021178616 @default.
- W4297973310 hasAuthorship W4297973310A5028437800 @default.
- W4297973310 hasBestOaLocation W42979733101 @default.
- W4297973310 hasConcept C101738243 @default.
- W4297973310 hasConcept C108583219 @default.
- W4297973310 hasConcept C111919701 @default.
- W4297973310 hasConcept C121332964 @default.
- W4297973310 hasConcept C127313418 @default.
- W4297973310 hasConcept C127413603 @default.
- W4297973310 hasConcept C131097465 @default.
- W4297973310 hasConcept C147168706 @default.
- W4297973310 hasConcept C153180895 @default.
- W4297973310 hasConcept C154945302 @default.
- W4297973310 hasConcept C163258240 @default.
- W4297973310 hasConcept C165205528 @default.
- W4297973310 hasConcept C175551986 @default.
- W4297973310 hasConcept C180591934 @default.
- W4297973310 hasConcept C28490314 @default.
- W4297973310 hasConcept C41008148 @default.
- W4297973310 hasConcept C43214815 @default.
- W4297973310 hasConcept C45273575 @default.
- W4297973310 hasConcept C50644808 @default.
- W4297973310 hasConcept C62520636 @default.
- W4297973310 hasConcept C739882 @default.
- W4297973310 hasConcept C78519656 @default.
- W4297973310 hasConceptScore W4297973310C101738243 @default.