Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297977525> ?p ?o ?g. }
- W4297977525 endingPage "118895" @default.
- W4297977525 startingPage "118895" @default.
- W4297977525 abstract "Search engine data have been widely used and shown to be useful in tourism demand forecasting. However, considering of the vast amounts of search keywords, how to better capture the tourists’ attention and explore the most predictive keyword combination remain unsolved. In this study, a two-stage feature selection-based methodology is proposed to address this question. Specifically, i.e., single feature selection method comparison for selecting a relative effective way to reduce the data dimension and ensure the quality of the initial subset, genetic algorithm in the second stage for obtaining feature subset better suitable for forecasting model with stronger predictive power. Experimental results indicate that the two-stage feature selection method outperforms all the considered benchmarks." @default.
- W4297977525 created "2022-10-01" @default.
- W4297977525 creator A5018633751 @default.
- W4297977525 creator A5068063133 @default.
- W4297977525 creator A5078558986 @default.
- W4297977525 creator A5081283168 @default.
- W4297977525 date "2023-03-01" @default.
- W4297977525 modified "2023-10-16" @default.
- W4297977525 title "How to capture tourists’ search behavior in tourism forecasts? A two-stage feature selection approach" @default.
- W4297977525 cites W1968694834 @default.
- W4297977525 cites W2008750647 @default.
- W4297977525 cites W2015799639 @default.
- W4297977525 cites W2017337590 @default.
- W4297977525 cites W2020355555 @default.
- W4297977525 cites W2033074013 @default.
- W4297977525 cites W2073681501 @default.
- W4297977525 cites W2086074129 @default.
- W4297977525 cites W2107219584 @default.
- W4297977525 cites W2122825543 @default.
- W4297977525 cites W2130778342 @default.
- W4297977525 cites W2154291363 @default.
- W4297977525 cites W2165700458 @default.
- W4297977525 cites W2324562510 @default.
- W4297977525 cites W2346188678 @default.
- W4297977525 cites W2400682180 @default.
- W4297977525 cites W2500086770 @default.
- W4297977525 cites W2591292252 @default.
- W4297977525 cites W2735537407 @default.
- W4297977525 cites W2741011090 @default.
- W4297977525 cites W2757825312 @default.
- W4297977525 cites W2780157115 @default.
- W4297977525 cites W2798990976 @default.
- W4297977525 cites W2884741544 @default.
- W4297977525 cites W2887255427 @default.
- W4297977525 cites W2889386826 @default.
- W4297977525 cites W2902775552 @default.
- W4297977525 cites W2921860615 @default.
- W4297977525 cites W2939094371 @default.
- W4297977525 cites W2971716595 @default.
- W4297977525 cites W2994343646 @default.
- W4297977525 cites W3000853296 @default.
- W4297977525 cites W3003977585 @default.
- W4297977525 cites W3015050543 @default.
- W4297977525 cites W3022716520 @default.
- W4297977525 cites W3031438208 @default.
- W4297977525 cites W3037058914 @default.
- W4297977525 cites W3037596256 @default.
- W4297977525 cites W3039230203 @default.
- W4297977525 cites W3051154456 @default.
- W4297977525 cites W3081889057 @default.
- W4297977525 cites W3114729326 @default.
- W4297977525 cites W3122297847 @default.
- W4297977525 cites W3125170714 @default.
- W4297977525 cites W3209126131 @default.
- W4297977525 cites W4213331950 @default.
- W4297977525 cites W4234698323 @default.
- W4297977525 cites W4289236186 @default.
- W4297977525 doi "https://doi.org/10.1016/j.eswa.2022.118895" @default.
- W4297977525 hasPublicationYear "2023" @default.
- W4297977525 type Work @default.
- W4297977525 citedByCount "4" @default.
- W4297977525 countsByYear W42979775252023 @default.
- W4297977525 crossrefType "journal-article" @default.
- W4297977525 hasAuthorship W4297977525A5018633751 @default.
- W4297977525 hasAuthorship W4297977525A5068063133 @default.
- W4297977525 hasAuthorship W4297977525A5078558986 @default.
- W4297977525 hasAuthorship W4297977525A5081283168 @default.
- W4297977525 hasConcept C111472728 @default.
- W4297977525 hasConcept C119857082 @default.
- W4297977525 hasConcept C124101348 @default.
- W4297977525 hasConcept C138885662 @default.
- W4297977525 hasConcept C146357865 @default.
- W4297977525 hasConcept C148483581 @default.
- W4297977525 hasConcept C151730666 @default.
- W4297977525 hasConcept C154945302 @default.
- W4297977525 hasConcept C17744445 @default.
- W4297977525 hasConcept C18918823 @default.
- W4297977525 hasConcept C199539241 @default.
- W4297977525 hasConcept C202444582 @default.
- W4297977525 hasConcept C2776401178 @default.
- W4297977525 hasConcept C2778136018 @default.
- W4297977525 hasConcept C2779530757 @default.
- W4297977525 hasConcept C33676613 @default.
- W4297977525 hasConcept C33923547 @default.
- W4297977525 hasConcept C41008148 @default.
- W4297977525 hasConcept C41895202 @default.
- W4297977525 hasConcept C81917197 @default.
- W4297977525 hasConcept C86803240 @default.
- W4297977525 hasConcept C8880873 @default.
- W4297977525 hasConceptScore W4297977525C111472728 @default.
- W4297977525 hasConceptScore W4297977525C119857082 @default.
- W4297977525 hasConceptScore W4297977525C124101348 @default.
- W4297977525 hasConceptScore W4297977525C138885662 @default.
- W4297977525 hasConceptScore W4297977525C146357865 @default.
- W4297977525 hasConceptScore W4297977525C148483581 @default.
- W4297977525 hasConceptScore W4297977525C151730666 @default.
- W4297977525 hasConceptScore W4297977525C154945302 @default.
- W4297977525 hasConceptScore W4297977525C17744445 @default.