Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297989400> ?p ?o ?g. }
- W4297989400 abstract "Abstract MF-LOGP, a new method for determining a single component octanol-water partition coefficients LogP is presented which uses molecular formula as the only input. Octanol-water partition coefficients are useful in many applications, ranging from environmental fate and drug delivery. Currently, partition coefficients are either experimentally measured or predicted as a function of structural fragments, topological descriptors, or thermodynamic properties known or calculated from precise molecular structures. The MF-LOGP method presented here differs from classical methods as it does not require any structural information and uses molecular formula as the sole model input. MF-LOGP is therefore useful for situations in which the structure is unknown or where the use of a low dimensional, easily automatable, and computationally inexpensive calculations is required. MF-LOGP is a random forest algorithm that is trained and tested on 15,420 data points, using 10 features derived from the molecular formula to make LogP predictions. Using an independent validation set of 2,722 data points, MF-LOGP was found to have an average RMSE = 0.77 ± 0.007, MAE = 0.52 ± 0.003, and R 2 = 0.83 ± 0.003. This performance fell within the spectrum of performances reported in the published literature for conventional higher dimensional models RMSE = 0.42–1.54, MAE = 0.09–1.07, and R 2 = 0.32–0.95). Compared with existing models, MF-LOGP requires a maximum of ten features and no structural information, thereby providing a practical and yet predictive tool. The development of MF-LOGP provides the groundwork for development of more physical prediction models leveraging big data analytical methods or complex multicomponent mixtures." @default.
- W4297989400 created "2022-10-01" @default.
- W4297989400 creator A5012614851 @default.
- W4297989400 creator A5027655988 @default.
- W4297989400 creator A5037255110 @default.
- W4297989400 creator A5056138758 @default.
- W4297989400 date "2022-09-29" @default.
- W4297989400 modified "2023-10-18" @default.
- W4297989400 title "Dimensionally Reduced Machine Learning Model for Predicting Single Component Octanol-Water Partition Coefficients" @default.
- W4297989400 cites W142069827 @default.
- W4297989400 cites W1492954502 @default.
- W4297989400 cites W1972152255 @default.
- W4297989400 cites W1996991681 @default.
- W4297989400 cites W2007191987 @default.
- W4297989400 cites W2013052612 @default.
- W4297989400 cites W2045193322 @default.
- W4297989400 cites W2047112187 @default.
- W4297989400 cites W2060484862 @default.
- W4297989400 cites W2061800084 @default.
- W4297989400 cites W2063431914 @default.
- W4297989400 cites W2066273100 @default.
- W4297989400 cites W2067468321 @default.
- W4297989400 cites W2068950612 @default.
- W4297989400 cites W2083780116 @default.
- W4297989400 cites W2085663480 @default.
- W4297989400 cites W2088536322 @default.
- W4297989400 cites W2090996511 @default.
- W4297989400 cites W2103075513 @default.
- W4297989400 cites W2134289054 @default.
- W4297989400 cites W2177317049 @default.
- W4297989400 cites W2343627562 @default.
- W4297989400 cites W2549115005 @default.
- W4297989400 cites W2593436234 @default.
- W4297989400 cites W2757568157 @default.
- W4297989400 cites W3007829240 @default.
- W4297989400 cites W3043737071 @default.
- W4297989400 cites W3083445142 @default.
- W4297989400 cites W3136003884 @default.
- W4297989400 cites W3198350258 @default.
- W4297989400 cites W4212791338 @default.
- W4297989400 cites W4248107770 @default.
- W4297989400 cites W601581966 @default.
- W4297989400 doi "https://doi.org/10.21203/rs.3.rs-2106077/v1" @default.
- W4297989400 hasPublicationYear "2022" @default.
- W4297989400 type Work @default.
- W4297989400 citedByCount "0" @default.
- W4297989400 crossrefType "posted-content" @default.
- W4297989400 hasAuthorship W4297989400A5012614851 @default.
- W4297989400 hasAuthorship W4297989400A5027655988 @default.
- W4297989400 hasAuthorship W4297989400A5037255110 @default.
- W4297989400 hasAuthorship W4297989400A5056138758 @default.
- W4297989400 hasBestOaLocation W42979894001 @default.
- W4297989400 hasConcept C105795698 @default.
- W4297989400 hasConcept C11413529 @default.
- W4297989400 hasConcept C114614502 @default.
- W4297989400 hasConcept C119857082 @default.
- W4297989400 hasConcept C121332964 @default.
- W4297989400 hasConcept C139945424 @default.
- W4297989400 hasConcept C164126121 @default.
- W4297989400 hasConcept C164923092 @default.
- W4297989400 hasConcept C168167062 @default.
- W4297989400 hasConcept C185592680 @default.
- W4297989400 hasConcept C186060115 @default.
- W4297989400 hasConcept C192552737 @default.
- W4297989400 hasConcept C2776226600 @default.
- W4297989400 hasConcept C33923547 @default.
- W4297989400 hasConcept C41008148 @default.
- W4297989400 hasConcept C42812 @default.
- W4297989400 hasConcept C43617362 @default.
- W4297989400 hasConcept C86803240 @default.
- W4297989400 hasConcept C97355855 @default.
- W4297989400 hasConceptScore W4297989400C105795698 @default.
- W4297989400 hasConceptScore W4297989400C11413529 @default.
- W4297989400 hasConceptScore W4297989400C114614502 @default.
- W4297989400 hasConceptScore W4297989400C119857082 @default.
- W4297989400 hasConceptScore W4297989400C121332964 @default.
- W4297989400 hasConceptScore W4297989400C139945424 @default.
- W4297989400 hasConceptScore W4297989400C164126121 @default.
- W4297989400 hasConceptScore W4297989400C164923092 @default.
- W4297989400 hasConceptScore W4297989400C168167062 @default.
- W4297989400 hasConceptScore W4297989400C185592680 @default.
- W4297989400 hasConceptScore W4297989400C186060115 @default.
- W4297989400 hasConceptScore W4297989400C192552737 @default.
- W4297989400 hasConceptScore W4297989400C2776226600 @default.
- W4297989400 hasConceptScore W4297989400C33923547 @default.
- W4297989400 hasConceptScore W4297989400C41008148 @default.
- W4297989400 hasConceptScore W4297989400C42812 @default.
- W4297989400 hasConceptScore W4297989400C43617362 @default.
- W4297989400 hasConceptScore W4297989400C86803240 @default.
- W4297989400 hasConceptScore W4297989400C97355855 @default.
- W4297989400 hasLocation W42979894001 @default.
- W4297989400 hasOpenAccess W4297989400 @default.
- W4297989400 hasPrimaryLocation W42979894001 @default.
- W4297989400 hasRelatedWork W1963669049 @default.
- W4297989400 hasRelatedWork W2005331435 @default.
- W4297989400 hasRelatedWork W2049271093 @default.
- W4297989400 hasRelatedWork W2061099817 @default.
- W4297989400 hasRelatedWork W2087954428 @default.
- W4297989400 hasRelatedWork W2094814511 @default.
- W4297989400 hasRelatedWork W3003573373 @default.