Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297991492> ?p ?o ?g. }
- W4297991492 endingPage "104237" @default.
- W4297991492 startingPage "104237" @default.
- W4297991492 abstract "Detecting the mental state of a driver using electroencephalography (EEG) signals can reduce the probability of traffic accidents. However, EEG signals are unstable and nonlinear and fatigue detection based on one-dimensional features may provide insufficient information, resulting in low recognition efficiency. To resolve these challenges, this paper proposes an EEG-based multi-dimensional feature selection and fusion method to recognise mental fatigue in drivers. First, the EEG signals were decomposed into α, β and θ bands, and then the corresponding time domain, frequency domain and nonlinear features were generated respectively. Furthermore, a three-layer feature-selection method based on Logistic Regression, one-way Analysis of Variance and Recursive Feature Elimination (logistic-ARFE) was proposed to solve the feature redundancy. Logistic-ARFE is designed to automatically select the optimal subset of mental fatigue features. Principal component analysis was used to fuse the optimal feature subset from different dimensions to obtain the fusion feature at a cumulative contribution ratio of 90%, which was used as the final feature to express the recognition accuracy of eight conventional machine learning models. A publicly available EEG dataset for driver fatigue was used to validate the proposed method. The final results show that six of the eight models achieve high recognition accuracy, which indicates that the Logistic-ARFE feature selection algorithm has applicability widely. In particular, compared with other studies using the same dataset, the Gaussian SVM proposed in this study based on time–frequency-nonlinear fusion features achieves the highest recognition accuracy, which is improved by 6.32% and 6.11% respectively." @default.
- W4297991492 created "2022-10-01" @default.
- W4297991492 creator A5005597844 @default.
- W4297991492 creator A5020048782 @default.
- W4297991492 creator A5021265151 @default.
- W4297991492 creator A5046121349 @default.
- W4297991492 creator A5067505354 @default.
- W4297991492 date "2023-01-01" @default.
- W4297991492 modified "2023-09-26" @default.
- W4297991492 title "Recognising drivers’ mental fatigue based on EEG multi-dimensional feature selection and fusion" @default.
- W4297991492 cites W1862394037 @default.
- W4297991492 cites W1964867524 @default.
- W4297991492 cites W1974687042 @default.
- W4297991492 cites W2006803905 @default.
- W4297991492 cites W2013926069 @default.
- W4297991492 cites W2014683958 @default.
- W4297991492 cites W2050646411 @default.
- W4297991492 cites W2051969088 @default.
- W4297991492 cites W2077204677 @default.
- W4297991492 cites W2095310269 @default.
- W4297991492 cites W2120547399 @default.
- W4297991492 cites W2143426320 @default.
- W4297991492 cites W2146182319 @default.
- W4297991492 cites W2161915646 @default.
- W4297991492 cites W2168468928 @default.
- W4297991492 cites W2171801645 @default.
- W4297991492 cites W2301212998 @default.
- W4297991492 cites W2316469882 @default.
- W4297991492 cites W2540320119 @default.
- W4297991492 cites W2587124275 @default.
- W4297991492 cites W2729200770 @default.
- W4297991492 cites W2749183303 @default.
- W4297991492 cites W2762779464 @default.
- W4297991492 cites W2767609750 @default.
- W4297991492 cites W2769044343 @default.
- W4297991492 cites W2776654602 @default.
- W4297991492 cites W2791470693 @default.
- W4297991492 cites W2806274639 @default.
- W4297991492 cites W2807107191 @default.
- W4297991492 cites W2893881304 @default.
- W4297991492 cites W2911178417 @default.
- W4297991492 cites W2940295770 @default.
- W4297991492 cites W3003417734 @default.
- W4297991492 cites W3004827935 @default.
- W4297991492 cites W3014541730 @default.
- W4297991492 cites W3031861466 @default.
- W4297991492 cites W3044940806 @default.
- W4297991492 cites W3048670727 @default.
- W4297991492 cites W3098796361 @default.
- W4297991492 cites W3110557649 @default.
- W4297991492 cites W3158433777 @default.
- W4297991492 cites W3159740316 @default.
- W4297991492 cites W3169328312 @default.
- W4297991492 cites W3206517496 @default.
- W4297991492 doi "https://doi.org/10.1016/j.bspc.2022.104237" @default.
- W4297991492 hasPublicationYear "2023" @default.
- W4297991492 type Work @default.
- W4297991492 citedByCount "7" @default.
- W4297991492 countsByYear W42979914922023 @default.
- W4297991492 crossrefType "journal-article" @default.
- W4297991492 hasAuthorship W4297991492A5005597844 @default.
- W4297991492 hasAuthorship W4297991492A5020048782 @default.
- W4297991492 hasAuthorship W4297991492A5021265151 @default.
- W4297991492 hasAuthorship W4297991492A5046121349 @default.
- W4297991492 hasAuthorship W4297991492A5067505354 @default.
- W4297991492 hasConcept C111919701 @default.
- W4297991492 hasConcept C118552586 @default.
- W4297991492 hasConcept C119857082 @default.
- W4297991492 hasConcept C121332964 @default.
- W4297991492 hasConcept C12267149 @default.
- W4297991492 hasConcept C124101348 @default.
- W4297991492 hasConcept C138885662 @default.
- W4297991492 hasConcept C148483581 @default.
- W4297991492 hasConcept C151956035 @default.
- W4297991492 hasConcept C152124472 @default.
- W4297991492 hasConcept C153180895 @default.
- W4297991492 hasConcept C154945302 @default.
- W4297991492 hasConcept C15744967 @default.
- W4297991492 hasConcept C158622935 @default.
- W4297991492 hasConcept C19118579 @default.
- W4297991492 hasConcept C27438332 @default.
- W4297991492 hasConcept C2776401178 @default.
- W4297991492 hasConcept C31972630 @default.
- W4297991492 hasConcept C41008148 @default.
- W4297991492 hasConcept C41895202 @default.
- W4297991492 hasConcept C522805319 @default.
- W4297991492 hasConcept C52622490 @default.
- W4297991492 hasConcept C62520636 @default.
- W4297991492 hasConceptScore W4297991492C111919701 @default.
- W4297991492 hasConceptScore W4297991492C118552586 @default.
- W4297991492 hasConceptScore W4297991492C119857082 @default.
- W4297991492 hasConceptScore W4297991492C121332964 @default.
- W4297991492 hasConceptScore W4297991492C12267149 @default.
- W4297991492 hasConceptScore W4297991492C124101348 @default.
- W4297991492 hasConceptScore W4297991492C138885662 @default.
- W4297991492 hasConceptScore W4297991492C148483581 @default.
- W4297991492 hasConceptScore W4297991492C151956035 @default.
- W4297991492 hasConceptScore W4297991492C152124472 @default.