Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297992272> ?p ?o ?g. }
- W4297992272 endingPage "71" @default.
- W4297992272 startingPage "39" @default.
- W4297992272 abstract "Biclustering is an unsupervised machine learning technique that simultaneously clusters rows and columns in a data matrix. Biclustering has emerged as an important approach and plays an essential role in various applications such as bioinformatics, text mining, and pattern recognition. However, finding significant biclusters is an NP-hard problem that can be formulated as an optimization problem. Therefore, different metaheuristics have been applied to biclustering problems because of their exploratory capability of solving complex optimization problems in reasonable computation time. Although various surveys on biclustering have been proposed, there is a lack of a comprehensive survey on the biclustering problem using metaheuristics. This chapter will present a survey of metaheuristics approaches to address the biclustering problem. The review focuses on the underlying optimization methods and their main search components: representation, objective function, and variation operators. A specific discussion on single versus multi-objective approaches is presented. Finally, some emerging research directions are presented." @default.
- W4297992272 created "2022-10-01" @default.
- W4297992272 creator A5016242138 @default.
- W4297992272 creator A5018073225 @default.
- W4297992272 creator A5026999947 @default.
- W4297992272 creator A5027615665 @default.
- W4297992272 date "2022-08-13" @default.
- W4297992272 modified "2023-10-16" @default.
- W4297992272 title "Biclustering Algorithms Based on Metaheuristics: A Review" @default.
- W4297992272 cites W119935446 @default.
- W4297992272 cites W1489772970 @default.
- W4297992272 cites W1555490457 @default.
- W4297992272 cites W1606251574 @default.
- W4297992272 cites W1891744697 @default.
- W4297992272 cites W1942178553 @default.
- W4297992272 cites W1963591609 @default.
- W4297992272 cites W1964854862 @default.
- W4297992272 cites W1968091311 @default.
- W4297992272 cites W1970204203 @default.
- W4297992272 cites W1984238247 @default.
- W4297992272 cites W1987559760 @default.
- W4297992272 cites W2008459449 @default.
- W4297992272 cites W2012397918 @default.
- W4297992272 cites W2018310139 @default.
- W4297992272 cites W2021542402 @default.
- W4297992272 cites W2022485595 @default.
- W4297992272 cites W2024060531 @default.
- W4297992272 cites W2032039625 @default.
- W4297992272 cites W2033070437 @default.
- W4297992272 cites W2036328877 @default.
- W4297992272 cites W2054966761 @default.
- W4297992272 cites W2055037769 @default.
- W4297992272 cites W2055849881 @default.
- W4297992272 cites W2058849889 @default.
- W4297992272 cites W2063506423 @default.
- W4297992272 cites W2089117115 @default.
- W4297992272 cites W2104492856 @default.
- W4297992272 cites W2105883975 @default.
- W4297992272 cites W2108480506 @default.
- W4297992272 cites W2108594562 @default.
- W4297992272 cites W2109501217 @default.
- W4297992272 cites W2111203738 @default.
- W4297992272 cites W2111826453 @default.
- W4297992272 cites W2113510994 @default.
- W4297992272 cites W2116723795 @default.
- W4297992272 cites W2118573797 @default.
- W4297992272 cites W2119282901 @default.
- W4297992272 cites W2124235814 @default.
- W4297992272 cites W2125138557 @default.
- W4297992272 cites W2125208254 @default.
- W4297992272 cites W2126105956 @default.
- W4297992272 cites W2130158951 @default.
- W4297992272 cites W2130866732 @default.
- W4297992272 cites W2136107412 @default.
- W4297992272 cites W2141659418 @default.
- W4297992272 cites W2143381319 @default.
- W4297992272 cites W2144544802 @default.
- W4297992272 cites W2144792853 @default.
- W4297992272 cites W2150930396 @default.
- W4297992272 cites W2151764402 @default.
- W4297992272 cites W2156960886 @default.
- W4297992272 cites W2166252916 @default.
- W4297992272 cites W2188068678 @default.
- W4297992272 cites W2219898335 @default.
- W4297992272 cites W2520427428 @default.
- W4297992272 cites W2609703520 @default.
- W4297992272 cites W2698625080 @default.
- W4297992272 cites W2794429933 @default.
- W4297992272 cites W2798870305 @default.
- W4297992272 cites W2800606270 @default.
- W4297992272 cites W2800694901 @default.
- W4297992272 cites W2884930948 @default.
- W4297992272 cites W2905283929 @default.
- W4297992272 cites W2934320204 @default.
- W4297992272 cites W2957378895 @default.
- W4297992272 cites W2972721876 @default.
- W4297992272 cites W3104514835 @default.
- W4297992272 cites W3113069895 @default.
- W4297992272 cites W3131242005 @default.
- W4297992272 cites W3155681870 @default.
- W4297992272 cites W4246565613 @default.
- W4297992272 cites W4252799384 @default.
- W4297992272 cites W852111780 @default.
- W4297992272 doi "https://doi.org/10.1007/978-981-19-3888-7_2" @default.
- W4297992272 hasPublicationYear "2022" @default.
- W4297992272 type Work @default.
- W4297992272 citedByCount "2" @default.
- W4297992272 countsByYear W42979922722023 @default.
- W4297992272 crossrefType "book-chapter" @default.
- W4297992272 hasAuthorship W4297992272A5016242138 @default.
- W4297992272 hasAuthorship W4297992272A5018073225 @default.
- W4297992272 hasAuthorship W4297992272A5026999947 @default.
- W4297992272 hasAuthorship W4297992272A5027615665 @default.
- W4297992272 hasBestOaLocation W42979922723 @default.
- W4297992272 hasConcept C109718341 @default.
- W4297992272 hasConcept C11413529 @default.
- W4297992272 hasConcept C119857082 @default.
- W4297992272 hasConcept C124101348 @default.