Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297994941> ?p ?o ?g. }
- W4297994941 endingPage "61" @default.
- W4297994941 startingPage "45" @default.
- W4297994941 abstract "Adaptive Bayesian regularized cardiac strain imaging (ABR-CSI) uses raw radiofrequency signals to estimate myocardial wall contractility as a surrogate measure of relative tissue elasticity incorporating regularization in the Bayesian sense. We determined the feasibility of using ABR-CSI -derived strain for in vivo longitudinal monitoring of cardiac remodeling in a murine ischemic injury model (myocardial infarction [MI] and ischemia-reperfusion [IR]) and validated the findings against ground truth histology. We randomly stratified 30 BALB/CJ mice (17 females, 13 males, median age = 10 wk) into three surgical groups (MI = 10, IR = 12, sham = 8) and imaged pre-surgery (baseline) and 1, 2, 7 and 14 d post-surgery using a pre-clinical high-frequency ultrasound system (VisualSonics Vevo 2100). We then used ABR-CSI to estimate end-systolic and peak radial (er) and longitudinal (el) strain estimates. ABR-CSI was found to have the ability to serially monitor non-uniform cardiac remodeling associated with murine MI and IR non-invasively through temporal variation of strain estimates post-surgery. Furthermore, radial end-systole (ES) strain images and segmental strain curves exhibited improved discrimination among infarct, border and remote regions around the myocardium compared with longitudinal strain results. For example, the MI group had significantly lower (Friedman's with Bonferroni-Dunn test, p = 0.002) ES er values in the anterior middle (infarcted) region at day 14 (n = 9, 9.23 ± 7.39%) compared with the BL group (n = 9, 44.32 ± 5.49). In contrast, anterior basal (remote region) mean ES er values did not differ significantly (non-significant Friedman's test, χ2 = 8.93, p = 0.06) at day 14 (n = 6, 33.05 ± 6.99%) compared with baseline (n = 6, 34.02 ± 6.75%). Histology slides stained with Masson's trichrome (MT) together with a machine learning model (random forest classifier) were used to derive the ground truth cardiac fibrosis parameter termed histology percentage of myocardial fibrosis (PMF). Both radial and longitudinal strain were found to have strong statistically significant correlations with the PMF parameter. However, radial strain had a higher Spearman's correlation value (εresρ = -0.67, n = 172, p < 0.001) compared with longitudinal strain (εlesρ = -0.60, n = 172, p < 0.001). Overall, the results of this study indicate that ABR-CSI can reliably perform non-invasive detection of infarcted and remote myocardium in small animal studies." @default.
- W4297994941 created "2022-10-01" @default.
- W4297994941 creator A5013233183 @default.
- W4297994941 creator A5022610211 @default.
- W4297994941 creator A5025522983 @default.
- W4297994941 creator A5034802588 @default.
- W4297994941 creator A5035071663 @default.
- W4297994941 creator A5037170654 @default.
- W4297994941 creator A5049139065 @default.
- W4297994941 creator A5056152773 @default.
- W4297994941 creator A5058208872 @default.
- W4297994941 creator A5070889646 @default.
- W4297994941 date "2023-01-01" @default.
- W4297994941 modified "2023-09-26" @default.
- W4297994941 title "In Vivo Longitudinal Monitoring of Cardiac Remodeling in Murine Ischemia Models With Adaptive Bayesian Regularized Cardiac Strain Imaging: Validation Against Histology" @default.
- W4297994941 cites W1870638042 @default.
- W4297994941 cites W1967582087 @default.
- W4297994941 cites W1976997250 @default.
- W4297994941 cites W1993509040 @default.
- W4297994941 cites W1994250749 @default.
- W4297994941 cites W2002312306 @default.
- W4297994941 cites W2017718463 @default.
- W4297994941 cites W2026679837 @default.
- W4297994941 cites W2038216004 @default.
- W4297994941 cites W2057230023 @default.
- W4297994941 cites W2059700429 @default.
- W4297994941 cites W2073399716 @default.
- W4297994941 cites W2073837785 @default.
- W4297994941 cites W2103956286 @default.
- W4297994941 cites W2105319113 @default.
- W4297994941 cites W2105528563 @default.
- W4297994941 cites W2111793718 @default.
- W4297994941 cites W2116032766 @default.
- W4297994941 cites W2117822549 @default.
- W4297994941 cites W2118262627 @default.
- W4297994941 cites W2119752929 @default.
- W4297994941 cites W2124208699 @default.
- W4297994941 cites W2129583831 @default.
- W4297994941 cites W2135445066 @default.
- W4297994941 cites W2138312203 @default.
- W4297994941 cites W2143728303 @default.
- W4297994941 cites W2157172828 @default.
- W4297994941 cites W2157534984 @default.
- W4297994941 cites W2157665562 @default.
- W4297994941 cites W2158881375 @default.
- W4297994941 cites W2160896865 @default.
- W4297994941 cites W2161240082 @default.
- W4297994941 cites W2161251168 @default.
- W4297994941 cites W2163352688 @default.
- W4297994941 cites W2163363089 @default.
- W4297994941 cites W2169288199 @default.
- W4297994941 cites W2181249735 @default.
- W4297994941 cites W2183616254 @default.
- W4297994941 cites W2315486260 @default.
- W4297994941 cites W2338202338 @default.
- W4297994941 cites W2472317287 @default.
- W4297994941 cites W2547842747 @default.
- W4297994941 cites W2719366450 @default.
- W4297994941 cites W2773891238 @default.
- W4297994941 cites W2781711192 @default.
- W4297994941 cites W2782933193 @default.
- W4297994941 cites W2805119577 @default.
- W4297994941 cites W2946080087 @default.
- W4297994941 cites W2952481429 @default.
- W4297994941 cites W2961549232 @default.
- W4297994941 cites W2971455802 @default.
- W4297994941 cites W2989726389 @default.
- W4297994941 cites W3004443960 @default.
- W4297994941 cites W3014384748 @default.
- W4297994941 cites W3045628030 @default.
- W4297994941 cites W3156883209 @default.
- W4297994941 cites W3216209701 @default.
- W4297994941 cites W4200170820 @default.
- W4297994941 cites W4214812269 @default.
- W4297994941 cites W4236463435 @default.
- W4297994941 cites W4280618746 @default.
- W4297994941 doi "https://doi.org/10.1016/j.ultrasmedbio.2022.07.012" @default.
- W4297994941 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36184393" @default.
- W4297994941 hasPublicationYear "2023" @default.
- W4297994941 type Work @default.
- W4297994941 citedByCount "0" @default.
- W4297994941 crossrefType "journal-article" @default.
- W4297994941 hasAuthorship W4297994941A5013233183 @default.
- W4297994941 hasAuthorship W4297994941A5022610211 @default.
- W4297994941 hasAuthorship W4297994941A5025522983 @default.
- W4297994941 hasAuthorship W4297994941A5034802588 @default.
- W4297994941 hasAuthorship W4297994941A5035071663 @default.
- W4297994941 hasAuthorship W4297994941A5037170654 @default.
- W4297994941 hasAuthorship W4297994941A5049139065 @default.
- W4297994941 hasAuthorship W4297994941A5056152773 @default.
- W4297994941 hasAuthorship W4297994941A5058208872 @default.
- W4297994941 hasAuthorship W4297994941A5070889646 @default.
- W4297994941 hasConcept C10134942 @default.
- W4297994941 hasConcept C121332964 @default.
- W4297994941 hasConcept C126322002 @default.
- W4297994941 hasConcept C150903083 @default.
- W4297994941 hasConcept C153294291 @default.
- W4297994941 hasConcept C164705383 @default.