Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297998559> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4297998559 endingPage "236" @default.
- W4297998559 startingPage "223" @default.
- W4297998559 abstract "For the past two decades, several studies have been conducted on missing value imputation in bioinformatics and offered the best method or approach for handling the datasets with missing values. When the datasets have a lesser amount of missing attribute values in the entire database, the missing attribute values be able to remove from the dataset without taking a noteworthy influence on the final mine. However, if a huge number of attribute values are missing, suspicious attention should be given to handle these kinds missing data because the entire dataset will lose their valuable information and the quality of the datasets. In particular, datasets have more than one missing attribute value disturb the algorithms performance. Missing value imputation method’s aim is to provide high-quality dataset without loss of any valuable information intelligently where the missing values are smaller or larger. Meanwhile ensemble learning techniques are achieving high performance in data mining task for the past few years. Researchers, therefore, prefer to work on the imputation of missing data using ensemble learning, a technique that cannot be ignored nowadays because missing data in bioinformatics datasets are rapidly increasing. Ensemble learning aim is transforms from weak learner to strong learner. Those ensemble techniques can process a massive amount of data in an efficient manner. This paper concentrates on the review of missing value imputation techniques and ensemble learning models for analyzing biological data." @default.
- W4297998559 created "2022-10-01" @default.
- W4297998559 creator A5003323358 @default.
- W4297998559 creator A5014948930 @default.
- W4297998559 creator A5045590843 @default.
- W4297998559 date "2022-09-30" @default.
- W4297998559 modified "2023-09-26" @default.
- W4297998559 title "Missing Data Imputation Using Ensemble Learning Technique: A Review" @default.
- W4297998559 cites W1506391160 @default.
- W4297998559 cites W1517213903 @default.
- W4297998559 cites W1964065566 @default.
- W4297998559 cites W1966503970 @default.
- W4297998559 cites W1977185509 @default.
- W4297998559 cites W1988013567 @default.
- W4297998559 cites W1997437882 @default.
- W4297998559 cites W2003655799 @default.
- W4297998559 cites W2003671800 @default.
- W4297998559 cites W2011764809 @default.
- W4297998559 cites W2015053531 @default.
- W4297998559 cites W2024480182 @default.
- W4297998559 cites W2049918412 @default.
- W4297998559 cites W2057720485 @default.
- W4297998559 cites W2097814478 @default.
- W4297998559 cites W2106286842 @default.
- W4297998559 cites W2121536973 @default.
- W4297998559 cites W2128215982 @default.
- W4297998559 cites W2145142228 @default.
- W4297998559 cites W2145842274 @default.
- W4297998559 cites W2168470985 @default.
- W4297998559 cites W2169076391 @default.
- W4297998559 cites W2295533422 @default.
- W4297998559 cites W2517277540 @default.
- W4297998559 cites W2589006615 @default.
- W4297998559 cites W2726858467 @default.
- W4297998559 cites W2771881341 @default.
- W4297998559 cites W2900646760 @default.
- W4297998559 cites W2901880002 @default.
- W4297998559 cites W2953086467 @default.
- W4297998559 cites W3000710439 @default.
- W4297998559 cites W3012758580 @default.
- W4297998559 cites W3013734981 @default.
- W4297998559 cites W3034856749 @default.
- W4297998559 cites W3117853120 @default.
- W4297998559 cites W3122883274 @default.
- W4297998559 cites W3128430136 @default.
- W4297998559 cites W3203705171 @default.
- W4297998559 cites W4200568410 @default.
- W4297998559 cites W4206141718 @default.
- W4297998559 cites W4240073563 @default.
- W4297998559 doi "https://doi.org/10.1007/978-981-19-3590-9_18" @default.
- W4297998559 hasPublicationYear "2022" @default.
- W4297998559 type Work @default.
- W4297998559 citedByCount "1" @default.
- W4297998559 countsByYear W42979985592023 @default.
- W4297998559 crossrefType "book-chapter" @default.
- W4297998559 hasAuthorship W4297998559A5003323358 @default.
- W4297998559 hasAuthorship W4297998559A5014948930 @default.
- W4297998559 hasAuthorship W4297998559A5045590843 @default.
- W4297998559 hasConcept C119857082 @default.
- W4297998559 hasConcept C124101348 @default.
- W4297998559 hasConcept C154945302 @default.
- W4297998559 hasConcept C41008148 @default.
- W4297998559 hasConcept C45942800 @default.
- W4297998559 hasConcept C58041806 @default.
- W4297998559 hasConcept C9357733 @default.
- W4297998559 hasConceptScore W4297998559C119857082 @default.
- W4297998559 hasConceptScore W4297998559C124101348 @default.
- W4297998559 hasConceptScore W4297998559C154945302 @default.
- W4297998559 hasConceptScore W4297998559C41008148 @default.
- W4297998559 hasConceptScore W4297998559C45942800 @default.
- W4297998559 hasConceptScore W4297998559C58041806 @default.
- W4297998559 hasConceptScore W4297998559C9357733 @default.
- W4297998559 hasLocation W42979985591 @default.
- W4297998559 hasOpenAccess W4297998559 @default.
- W4297998559 hasPrimaryLocation W42979985591 @default.
- W4297998559 hasRelatedWork W1513289763 @default.
- W4297998559 hasRelatedWork W1973721774 @default.
- W4297998559 hasRelatedWork W2541565311 @default.
- W4297998559 hasRelatedWork W2574666645 @default.
- W4297998559 hasRelatedWork W2751555317 @default.
- W4297998559 hasRelatedWork W3049453136 @default.
- W4297998559 hasRelatedWork W3179858851 @default.
- W4297998559 hasRelatedWork W4226239514 @default.
- W4297998559 hasRelatedWork W569810835 @default.
- W4297998559 hasRelatedWork W2112497756 @default.
- W4297998559 isParatext "false" @default.
- W4297998559 isRetracted "false" @default.
- W4297998559 workType "book-chapter" @default.