Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298009384> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4298009384 endingPage "118904" @default.
- W4298009384 startingPage "118904" @default.
- W4298009384 abstract "Unsupervised Learning is widely used approach for outlier detection because non-availability of training dataset in various domains (especially, in evolving domains). Approaches like clustering-based, distance-based, density-based outlier detection methods have been proposed over the last several years. Recently, outlier detection using deep learning has drawn attention of researchers. Deep learning-based unsupervised techniques (autoencoder) minimize the reconstruction error using each data instance in the dataset and subsequently, data points with higher reconstruction error are treated as outlier points. However, autoencoder based model overestimates the reconstruction error for normal points whereas it is underestimated for outlier points. As a result, genuine outliers are missed by this approach. We propose two techniques to address the issue of reconstruction error stated earlier. Main idea of our techniques is to compute reconstruction error only using ‘normal points’. In the proposed techniques, we identify probable outliers utilizing the clustering approaches intelligently and subsequently, we do not include them in the minimization process of reconstruction error. We exploit recently recognized clustering approach Density Peak Clustering (DPC) to identify the probable outlier points based on density and distance to the higher density points. However, DPC has inherent drawback of setting threshold which plays important role in deciding density. Therefore, Self Organizing Map (SOM) is exploited as another clustering approach in this article. Subsequently, we conducted experiments on synthetic as well as real world datasets and the results show that the proposed technique outperforms the popular existing deep learning model like RandNet, Boosting-based Autoencoder Ensemble method (BAE), One Class Support Vector Machine (OCSVM) and density-based algorithms like LOF, LDOF, INFLO, and RDOS." @default.
- W4298009384 created "2022-10-01" @default.
- W4298009384 creator A5042254428 @default.
- W4298009384 creator A5052765616 @default.
- W4298009384 date "2023-03-01" @default.
- W4298009384 modified "2023-10-17" @default.
- W4298009384 title "An efficient method for autoencoder based outlier detection" @default.
- W4298009384 cites W126266486 @default.
- W4298009384 cites W1499399937 @default.
- W4298009384 cites W1584412742 @default.
- W4298009384 cites W1990517717 @default.
- W4298009384 cites W2019014808 @default.
- W4298009384 cites W2025768430 @default.
- W4298009384 cites W2079810998 @default.
- W4298009384 cites W2084512860 @default.
- W4298009384 cites W2095835198 @default.
- W4298009384 cites W2102999520 @default.
- W4298009384 cites W2105942355 @default.
- W4298009384 cites W2110784166 @default.
- W4298009384 cites W2110802877 @default.
- W4298009384 cites W2117839996 @default.
- W4298009384 cites W2122646361 @default.
- W4298009384 cites W2131989759 @default.
- W4298009384 cites W2132870739 @default.
- W4298009384 cites W2137130182 @default.
- W4298009384 cites W2144182447 @default.
- W4298009384 cites W2160642098 @default.
- W4298009384 cites W2165835468 @default.
- W4298009384 cites W2171209182 @default.
- W4298009384 cites W2268194897 @default.
- W4298009384 cites W2282861635 @default.
- W4298009384 cites W2340896621 @default.
- W4298009384 cites W2406935090 @default.
- W4298009384 cites W2491795313 @default.
- W4298009384 cites W2590761734 @default.
- W4298009384 cites W2621614835 @default.
- W4298009384 cites W2743138268 @default.
- W4298009384 cites W2756489700 @default.
- W4298009384 cites W2809957137 @default.
- W4298009384 cites W2889109290 @default.
- W4298009384 cites W2913934873 @default.
- W4298009384 cites W2921385201 @default.
- W4298009384 cites W2942670956 @default.
- W4298009384 cites W2963291921 @default.
- W4298009384 cites W2966559104 @default.
- W4298009384 cites W3135550350 @default.
- W4298009384 cites W3165463008 @default.
- W4298009384 cites W4282980030 @default.
- W4298009384 cites W80917968 @default.
- W4298009384 doi "https://doi.org/10.1016/j.eswa.2022.118904" @default.
- W4298009384 hasPublicationYear "2023" @default.
- W4298009384 type Work @default.
- W4298009384 citedByCount "3" @default.
- W4298009384 countsByYear W42980093842023 @default.
- W4298009384 crossrefType "journal-article" @default.
- W4298009384 hasAuthorship W4298009384A5042254428 @default.
- W4298009384 hasAuthorship W4298009384A5052765616 @default.
- W4298009384 hasConcept C101738243 @default.
- W4298009384 hasConcept C108583219 @default.
- W4298009384 hasConcept C119857082 @default.
- W4298009384 hasConcept C124101348 @default.
- W4298009384 hasConcept C153180895 @default.
- W4298009384 hasConcept C154945302 @default.
- W4298009384 hasConcept C41008148 @default.
- W4298009384 hasConcept C73555534 @default.
- W4298009384 hasConcept C739882 @default.
- W4298009384 hasConcept C79337645 @default.
- W4298009384 hasConcept C8038995 @default.
- W4298009384 hasConceptScore W4298009384C101738243 @default.
- W4298009384 hasConceptScore W4298009384C108583219 @default.
- W4298009384 hasConceptScore W4298009384C119857082 @default.
- W4298009384 hasConceptScore W4298009384C124101348 @default.
- W4298009384 hasConceptScore W4298009384C153180895 @default.
- W4298009384 hasConceptScore W4298009384C154945302 @default.
- W4298009384 hasConceptScore W4298009384C41008148 @default.
- W4298009384 hasConceptScore W4298009384C73555534 @default.
- W4298009384 hasConceptScore W4298009384C739882 @default.
- W4298009384 hasConceptScore W4298009384C79337645 @default.
- W4298009384 hasConceptScore W4298009384C8038995 @default.
- W4298009384 hasLocation W42980093841 @default.
- W4298009384 hasOpenAccess W4298009384 @default.
- W4298009384 hasPrimaryLocation W42980093841 @default.
- W4298009384 hasRelatedWork W2292254049 @default.
- W4298009384 hasRelatedWork W2784313445 @default.
- W4298009384 hasRelatedWork W2964457614 @default.
- W4298009384 hasRelatedWork W3044458868 @default.
- W4298009384 hasRelatedWork W3123344745 @default.
- W4298009384 hasRelatedWork W3136392033 @default.
- W4298009384 hasRelatedWork W3183283580 @default.
- W4298009384 hasRelatedWork W4206064467 @default.
- W4298009384 hasRelatedWork W4250175685 @default.
- W4298009384 hasRelatedWork W4310034804 @default.
- W4298009384 hasVolume "213" @default.
- W4298009384 isParatext "false" @default.
- W4298009384 isRetracted "false" @default.
- W4298009384 workType "article" @default.