Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298013119> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4298013119 endingPage "108635" @default.
- W4298013119 startingPage "108635" @default.
- W4298013119 abstract "• A fast and accurate error evaluation for linear power flow models is proposed. • The method is valuable in predicting error impact on decision-making and selecting appropriate linear power flow models for certain applications. • A formulation for improving the accuracy of linear power flow models is also proposed. • The proposed method is particularly advantageous in large-scale systems with high uncertainties. Linear power flow models are widely used in power system analysis to approximate nonlinear AC power flow equations. A fast and accurate error evaluation for linear power flow models is valuable in predicting error impact on decision-making and selecting appropriate linear power flow models for certain applications. Therefore, this paper focuses on the evaluation of line-form linear power flow models and proposes a novel method that enables a fast and accurate error evaluation for most linear power flow models that have fewer independent variables. In existing studies, linear power flow models are generally evaluated by Monte Carlo simulation method, in which it measures errors by using limited scenarios under certain conditions. Such evaluation method is enough for conventional power systems with low uncertainties. However, in systems with large fluctuations of renewable energy, the conventional Monte Carlo evaluation faces challenges. For example, a system with K uncertain loads requires at least 2 K stochastic scenarios to represent the uncertainty by only considering the upper and the lower bounds of each uncertain load. This system-level scenario enumeration faces dimensionality curse and high computational burdens, especially for large-scale systems with high uncertainties. Given this difficulty, this paper proposes a novel evaluation method that defines the box-set evaluation ranges to avoid the dimensionality curse in system-level scenario enumerations. To achieve a fast evaluation, all algorithms in the proposed evaluation method are analytical. Besides, based on the evaluation method, a formulation for improving the accuracy of linear power flow models is proposed, whose analytical solution is also given. Several typical systems with different load levels are tested, and the results verify the effectiveness of the proposed method." @default.
- W4298013119 created "2022-10-01" @default.
- W4298013119 creator A5032033256 @default.
- W4298013119 creator A5068911234 @default.
- W4298013119 creator A5075845093 @default.
- W4298013119 creator A5089534918 @default.
- W4298013119 date "2023-02-01" @default.
- W4298013119 modified "2023-10-14" @default.
- W4298013119 title "A method for evaluating and improving linear power flow models in system with large fluctuations" @default.
- W4298013119 cites W1967428359 @default.
- W4298013119 cites W1986293382 @default.
- W4298013119 cites W2030641329 @default.
- W4298013119 cites W2067584824 @default.
- W4298013119 cites W2101119480 @default.
- W4298013119 cites W2106424475 @default.
- W4298013119 cites W2168283238 @default.
- W4298013119 cites W2179635461 @default.
- W4298013119 cites W2334439829 @default.
- W4298013119 cites W2502954024 @default.
- W4298013119 cites W2519739684 @default.
- W4298013119 cites W2550224563 @default.
- W4298013119 cites W2565958257 @default.
- W4298013119 cites W2644347995 @default.
- W4298013119 cites W2769725815 @default.
- W4298013119 cites W2885017232 @default.
- W4298013119 cites W2891556519 @default.
- W4298013119 cites W2943321399 @default.
- W4298013119 cites W2949928960 @default.
- W4298013119 cites W2963832523 @default.
- W4298013119 cites W2972389776 @default.
- W4298013119 cites W2989831485 @default.
- W4298013119 cites W3007738141 @default.
- W4298013119 cites W3051938004 @default.
- W4298013119 cites W3135265609 @default.
- W4298013119 cites W3138822809 @default.
- W4298013119 cites W3153428430 @default.
- W4298013119 cites W3166938132 @default.
- W4298013119 cites W3172421119 @default.
- W4298013119 cites W3183213648 @default.
- W4298013119 cites W3208074180 @default.
- W4298013119 cites W4220671688 @default.
- W4298013119 cites W3154390364 @default.
- W4298013119 doi "https://doi.org/10.1016/j.ijepes.2022.108635" @default.
- W4298013119 hasPublicationYear "2023" @default.
- W4298013119 type Work @default.
- W4298013119 citedByCount "4" @default.
- W4298013119 countsByYear W42980131192023 @default.
- W4298013119 crossrefType "journal-article" @default.
- W4298013119 hasAuthorship W4298013119A5032033256 @default.
- W4298013119 hasAuthorship W4298013119A5068911234 @default.
- W4298013119 hasAuthorship W4298013119A5075845093 @default.
- W4298013119 hasAuthorship W4298013119A5089534918 @default.
- W4298013119 hasConcept C121332964 @default.
- W4298013119 hasConcept C163258240 @default.
- W4298013119 hasConcept C2986056383 @default.
- W4298013119 hasConcept C38349280 @default.
- W4298013119 hasConcept C41008148 @default.
- W4298013119 hasConcept C57879066 @default.
- W4298013119 hasConcept C62520636 @default.
- W4298013119 hasConcept C89227174 @default.
- W4298013119 hasConceptScore W4298013119C121332964 @default.
- W4298013119 hasConceptScore W4298013119C163258240 @default.
- W4298013119 hasConceptScore W4298013119C2986056383 @default.
- W4298013119 hasConceptScore W4298013119C38349280 @default.
- W4298013119 hasConceptScore W4298013119C41008148 @default.
- W4298013119 hasConceptScore W4298013119C57879066 @default.
- W4298013119 hasConceptScore W4298013119C62520636 @default.
- W4298013119 hasConceptScore W4298013119C89227174 @default.
- W4298013119 hasFunder F4320321001 @default.
- W4298013119 hasLocation W42980131191 @default.
- W4298013119 hasOpenAccess W4298013119 @default.
- W4298013119 hasPrimaryLocation W42980131191 @default.
- W4298013119 hasRelatedWork W1982404007 @default.
- W4298013119 hasRelatedWork W2041489870 @default.
- W4298013119 hasRelatedWork W2072716372 @default.
- W4298013119 hasRelatedWork W2107327054 @default.
- W4298013119 hasRelatedWork W2350849954 @default.
- W4298013119 hasRelatedWork W2361311359 @default.
- W4298013119 hasRelatedWork W2390067552 @default.
- W4298013119 hasRelatedWork W2810054025 @default.
- W4298013119 hasRelatedWork W2935944478 @default.
- W4298013119 hasRelatedWork W4221124702 @default.
- W4298013119 hasVolume "145" @default.
- W4298013119 isParatext "false" @default.
- W4298013119 isRetracted "false" @default.
- W4298013119 workType "article" @default.