Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298022651> ?p ?o ?g. }
- W4298022651 abstract "Abstract Patzek et al. (2013, 2014) proposed the generalized physics-based scaling curve method as an alternative approach to the empirical decline curve analysis that predicted shale gas well production. Independently, (Patzek, 2019; Patzek et al., 2019) also introduced the Generalized Extreme Value statistics to evaluate cohorts of shale wells and their survival rates. In this work, we built a conceptual reservoir model of a typical, hydraulically fractured well in the northeast Pennsylvania Marcellus shale using a commercial reservoir simulator (CMG-GEM) to validate the generalized master curve numerically. We use the simulated gas production as the input data to estimate the generalized reservoir scaling curve, and we compare it to the master curve presented in Saputra et al. (2022). Our results reveal that the physical scaling method captures the physics behind gas production from mudrock plays. Our reservoir simulations agree with the master curve. We conclude that the simple method is an excellent alternative to the current industrial forecasting methods as it is computationally cost-effective, more flexible, and requires fewer input data. Also, the numerical reservoir simulations confirm the behavior of the generalized scaling curve with the variation of selected input factors. We complemented this study by conducting a global sensitivity analysis (GSA) to systematically examine the impacts of hydraulic fracture half-length and spacing, unstimulated shale permeability and gas adsorption on the variations of two master curve scaling parameters, the gas mass in the stimulated reservoir volume (MSRV), and the characteristic pressure interference time (τ). GSA using a reservoir simulator is prohibitive. Therefore, we implement and validate a Gaussian process emulator that represents probabilistically the scaling parameters estimated from the reservoir simulation output. We calibrate the emulator with a small set of experiments sampled with a space-filling design. The conducted study provides new insights into the relationship between the production scaling variables MSRV and τ and the reservoir parameters. The results reveal the high importance and nonlinear effects of the hydraulic fracture height, half-length, maximum gas volume adsorbed, and matrix porosity in varying the scaling variable MSRV. Also, the unstimulated matrix permeability and the hydraulic fracture spacing contribute significantly to nonlinear variations of the scaling variable, τ. Finally, gas adsorption has a small effect on the cumulative gas produced but significantly affects the scaling factor MSRV. Thus, gas adsorption becomes essential when estimating the ultimate recovery factor in the Marcellus shale wells." @default.
- W4298022651 created "2022-10-01" @default.
- W4298022651 creator A5013977114 @default.
- W4298022651 creator A5027451489 @default.
- W4298022651 creator A5077066922 @default.
- W4298022651 date "2022-09-26" @default.
- W4298022651 modified "2023-09-26" @default.
- W4298022651 title "Validation and Analysis of the Physics-Based Scaling Curve Method for Ultimate Recovery Prediction in Hy-Draulically Fractured Shale Gas Wells" @default.
- W4298022651 cites W100464641 @default.
- W4298022651 cites W1712887680 @default.
- W4298022651 cites W1911106672 @default.
- W4298022651 cites W1970037416 @default.
- W4298022651 cites W1977046327 @default.
- W4298022651 cites W2001195867 @default.
- W4298022651 cites W2014750066 @default.
- W4298022651 cites W2015028480 @default.
- W4298022651 cites W2016397679 @default.
- W4298022651 cites W2026645785 @default.
- W4298022651 cites W2032278856 @default.
- W4298022651 cites W2056442445 @default.
- W4298022651 cites W2058566195 @default.
- W4298022651 cites W2059896164 @default.
- W4298022651 cites W2069970580 @default.
- W4298022651 cites W2072874235 @default.
- W4298022651 cites W2081383199 @default.
- W4298022651 cites W2093283927 @default.
- W4298022651 cites W2114822781 @default.
- W4298022651 cites W2125107816 @default.
- W4298022651 cites W2129787893 @default.
- W4298022651 cites W2154822103 @default.
- W4298022651 cites W2328542600 @default.
- W4298022651 cites W2341850669 @default.
- W4298022651 cites W2472969106 @default.
- W4298022651 cites W2508449874 @default.
- W4298022651 cites W2519116169 @default.
- W4298022651 cites W2538597852 @default.
- W4298022651 cites W2552437864 @default.
- W4298022651 cites W2766535763 @default.
- W4298022651 cites W2783108104 @default.
- W4298022651 cites W2803141435 @default.
- W4298022651 cites W2896653789 @default.
- W4298022651 cites W2897409607 @default.
- W4298022651 cites W2969997580 @default.
- W4298022651 cites W2982253114 @default.
- W4298022651 cites W2996872782 @default.
- W4298022651 cites W3010214668 @default.
- W4298022651 cites W3213393492 @default.
- W4298022651 cites W4205180311 @default.
- W4298022651 cites W4232881054 @default.
- W4298022651 cites W4235606958 @default.
- W4298022651 cites W4249753629 @default.
- W4298022651 doi "https://doi.org/10.2118/210350-ms" @default.
- W4298022651 hasPublicationYear "2022" @default.
- W4298022651 type Work @default.
- W4298022651 citedByCount "0" @default.
- W4298022651 crossrefType "proceedings-article" @default.
- W4298022651 hasAuthorship W4298022651A5013977114 @default.
- W4298022651 hasAuthorship W4298022651A5027451489 @default.
- W4298022651 hasAuthorship W4298022651A5077066922 @default.
- W4298022651 hasBestOaLocation W42980226512 @default.
- W4298022651 hasConcept C120882062 @default.
- W4298022651 hasConcept C121332964 @default.
- W4298022651 hasConcept C127413603 @default.
- W4298022651 hasConcept C153127940 @default.
- W4298022651 hasConcept C185592680 @default.
- W4298022651 hasConcept C24345647 @default.
- W4298022651 hasConcept C2524010 @default.
- W4298022651 hasConcept C2778668878 @default.
- W4298022651 hasConcept C2779096232 @default.
- W4298022651 hasConcept C33923547 @default.
- W4298022651 hasConcept C41625074 @default.
- W4298022651 hasConcept C44154836 @default.
- W4298022651 hasConcept C548081761 @default.
- W4298022651 hasConcept C55493867 @default.
- W4298022651 hasConcept C57879066 @default.
- W4298022651 hasConcept C78762247 @default.
- W4298022651 hasConcept C99844830 @default.
- W4298022651 hasConceptScore W4298022651C120882062 @default.
- W4298022651 hasConceptScore W4298022651C121332964 @default.
- W4298022651 hasConceptScore W4298022651C127413603 @default.
- W4298022651 hasConceptScore W4298022651C153127940 @default.
- W4298022651 hasConceptScore W4298022651C185592680 @default.
- W4298022651 hasConceptScore W4298022651C24345647 @default.
- W4298022651 hasConceptScore W4298022651C2524010 @default.
- W4298022651 hasConceptScore W4298022651C2778668878 @default.
- W4298022651 hasConceptScore W4298022651C2779096232 @default.
- W4298022651 hasConceptScore W4298022651C33923547 @default.
- W4298022651 hasConceptScore W4298022651C41625074 @default.
- W4298022651 hasConceptScore W4298022651C44154836 @default.
- W4298022651 hasConceptScore W4298022651C548081761 @default.
- W4298022651 hasConceptScore W4298022651C55493867 @default.
- W4298022651 hasConceptScore W4298022651C57879066 @default.
- W4298022651 hasConceptScore W4298022651C78762247 @default.
- W4298022651 hasConceptScore W4298022651C99844830 @default.
- W4298022651 hasLocation W42980226511 @default.
- W4298022651 hasLocation W42980226512 @default.
- W4298022651 hasOpenAccess W4298022651 @default.
- W4298022651 hasPrimaryLocation W42980226511 @default.
- W4298022651 hasRelatedWork W1967449962 @default.
- W4298022651 hasRelatedWork W2012587793 @default.