Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298051720> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4298051720 abstract "The COVID-19 pandemic continues to bring up various topics discussed or debated on social media. In order to explore the impact of pandemics on people's lives, it is crucial to understand the public's concerns and attitudes towards pandemic-related entities (e.g., drugs, vaccines) on social media. However, models trained on existing named entity recognition (NER) or targeted sentiment analysis (TSA) datasets have limited ability to understand COVID-19-related social media texts because these datasets are not designed or annotated from a medical perspective. This paper releases METS-CoV, a dataset containing medical entities and targeted sentiments from COVID-19-related tweets. METS-CoV contains 10,000 tweets with 7 types of entities, including 4 medical entity types (Disease, Drug, Symptom, and Vaccine) and 3 general entity types (Person, Location, and Organization). To further investigate tweet users' attitudes toward specific entities, 4 types of entities (Person, Organization, Drug, and Vaccine) are selected and annotated with user sentiments, resulting in a targeted sentiment dataset with 9,101 entities (in 5,278 tweets). To the best of our knowledge, METS-CoV is the first dataset to collect medical entities and corresponding sentiments of COVID-19-related tweets. We benchmark the performance of classical machine learning models and state-of-the-art deep learning models on NER and TSA tasks with extensive experiments. Results show that the dataset has vast room for improvement for both NER and TSA tasks. METS-CoV is an important resource for developing better medical social media tools and facilitating computational social science research, especially in epidemiology. Our data, annotation guidelines, benchmark models, and source code are publicly available (https://github.com/YLab-Open/METS-CoV) to ensure reproducibility." @default.
- W4298051720 created "2022-10-01" @default.
- W4298051720 creator A5012543243 @default.
- W4298051720 creator A5032723793 @default.
- W4298051720 creator A5052723398 @default.
- W4298051720 creator A5054429473 @default.
- W4298051720 creator A5057485069 @default.
- W4298051720 creator A5062888811 @default.
- W4298051720 creator A5075758139 @default.
- W4298051720 creator A5081953757 @default.
- W4298051720 creator A5083041690 @default.
- W4298051720 date "2022-09-27" @default.
- W4298051720 modified "2023-10-18" @default.
- W4298051720 title "METS-CoV: A Dataset of Medical Entity and Targeted Sentiment on COVID-19 Related Tweets" @default.
- W4298051720 doi "https://doi.org/10.48550/arxiv.2209.13773" @default.
- W4298051720 hasPublicationYear "2022" @default.
- W4298051720 type Work @default.
- W4298051720 citedByCount "0" @default.
- W4298051720 crossrefType "posted-content" @default.
- W4298051720 hasAuthorship W4298051720A5012543243 @default.
- W4298051720 hasAuthorship W4298051720A5032723793 @default.
- W4298051720 hasAuthorship W4298051720A5052723398 @default.
- W4298051720 hasAuthorship W4298051720A5054429473 @default.
- W4298051720 hasAuthorship W4298051720A5057485069 @default.
- W4298051720 hasAuthorship W4298051720A5062888811 @default.
- W4298051720 hasAuthorship W4298051720A5075758139 @default.
- W4298051720 hasAuthorship W4298051720A5081953757 @default.
- W4298051720 hasAuthorship W4298051720A5083041690 @default.
- W4298051720 hasBestOaLocation W42980517201 @default.
- W4298051720 hasConcept C12713177 @default.
- W4298051720 hasConcept C127413603 @default.
- W4298051720 hasConcept C13280743 @default.
- W4298051720 hasConcept C136764020 @default.
- W4298051720 hasConcept C142724271 @default.
- W4298051720 hasConcept C154945302 @default.
- W4298051720 hasConcept C185798385 @default.
- W4298051720 hasConcept C201995342 @default.
- W4298051720 hasConcept C205649164 @default.
- W4298051720 hasConcept C206345919 @default.
- W4298051720 hasConcept C2522767166 @default.
- W4298051720 hasConcept C2779134260 @default.
- W4298051720 hasConcept C2779135771 @default.
- W4298051720 hasConcept C2780451532 @default.
- W4298051720 hasConcept C3008058167 @default.
- W4298051720 hasConcept C31258907 @default.
- W4298051720 hasConcept C41008148 @default.
- W4298051720 hasConcept C518677369 @default.
- W4298051720 hasConcept C524204448 @default.
- W4298051720 hasConcept C66402592 @default.
- W4298051720 hasConcept C71924100 @default.
- W4298051720 hasConcept C89623803 @default.
- W4298051720 hasConceptScore W4298051720C12713177 @default.
- W4298051720 hasConceptScore W4298051720C127413603 @default.
- W4298051720 hasConceptScore W4298051720C13280743 @default.
- W4298051720 hasConceptScore W4298051720C136764020 @default.
- W4298051720 hasConceptScore W4298051720C142724271 @default.
- W4298051720 hasConceptScore W4298051720C154945302 @default.
- W4298051720 hasConceptScore W4298051720C185798385 @default.
- W4298051720 hasConceptScore W4298051720C201995342 @default.
- W4298051720 hasConceptScore W4298051720C205649164 @default.
- W4298051720 hasConceptScore W4298051720C206345919 @default.
- W4298051720 hasConceptScore W4298051720C2522767166 @default.
- W4298051720 hasConceptScore W4298051720C2779134260 @default.
- W4298051720 hasConceptScore W4298051720C2779135771 @default.
- W4298051720 hasConceptScore W4298051720C2780451532 @default.
- W4298051720 hasConceptScore W4298051720C3008058167 @default.
- W4298051720 hasConceptScore W4298051720C31258907 @default.
- W4298051720 hasConceptScore W4298051720C41008148 @default.
- W4298051720 hasConceptScore W4298051720C518677369 @default.
- W4298051720 hasConceptScore W4298051720C524204448 @default.
- W4298051720 hasConceptScore W4298051720C66402592 @default.
- W4298051720 hasConceptScore W4298051720C71924100 @default.
- W4298051720 hasConceptScore W4298051720C89623803 @default.
- W4298051720 hasLocation W42980517201 @default.
- W4298051720 hasOpenAccess W4298051720 @default.
- W4298051720 hasPrimaryLocation W42980517201 @default.
- W4298051720 hasRelatedWork W2243502667 @default.
- W4298051720 hasRelatedWork W2252197266 @default.
- W4298051720 hasRelatedWork W2412155161 @default.
- W4298051720 hasRelatedWork W2888501547 @default.
- W4298051720 hasRelatedWork W3120665316 @default.
- W4298051720 hasRelatedWork W3148756070 @default.
- W4298051720 hasRelatedWork W4205350312 @default.
- W4298051720 hasRelatedWork W4294075501 @default.
- W4298051720 hasRelatedWork W4312733094 @default.
- W4298051720 hasRelatedWork W63223808 @default.
- W4298051720 isParatext "false" @default.
- W4298051720 isRetracted "false" @default.
- W4298051720 workType "article" @default.