Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298068450> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4298068450 abstract "A metric measure space is a complete separable metric space equipped with probability measure that has full support. Two such spaces are equivalent if they are isometric as metric spaces via an isometry that maps the probability measure on the first space to the probability measure on the second. The resulting set of equivalence classes can be metrized with the Gromov-Prohorov metric of Greven, Pfaffelhuber and Winter. We consider the natural binary operation $boxplus$ on this space that takes two metric measure spaces and forms their Cartesian product equipped with the sum of the two metrics and the product of the two probability measures. We show that the metric measure spaces equipped with this operation form a cancellative, commutative, Polish semigroup with a translation invariant metric and that each element has a unique factorization into prime elements. We investigate the interaction between the semigroup structure and the natural action of the positive real numbers on this space that arises from scaling the metric. For example, we show that for any given positive real numbers $a,b,c$ the trivial space is the only space $mathcal{X}$ that satisfies $a mathcal{X} boxplus b mathcal{X} = c mathcal{X}$. We establish that there is no analogue of the law of large numbers: if $mathbf{X}_1, mathbf{X}_2$..., is an identically distributed independent sequence of random spaces, then no subsequence of $frac{1}{n} boxplus_{k=1}^n mathbf{X}_k$ converges in distribution unless each $mathbf{X}_k$ is almost surely equal to the trivial space. We characterize the infinitely divisible probability measures and the L'evy processes on this semigroup, characterize the stable probability measures and establish a counterpart of the LePage representation for the latter class." @default.
- W4298068450 created "2022-10-01" @default.
- W4298068450 creator A5032099577 @default.
- W4298068450 creator A5047884754 @default.
- W4298068450 date "2014-01-27" @default.
- W4298068450 modified "2023-10-16" @default.
- W4298068450 title "The semigroup of metric measure spaces and its infinitely divisible probability measures" @default.
- W4298068450 doi "https://doi.org/10.48550/arxiv.1401.7052" @default.
- W4298068450 hasPublicationYear "2014" @default.
- W4298068450 type Work @default.
- W4298068450 citedByCount "0" @default.
- W4298068450 crossrefType "posted-content" @default.
- W4298068450 hasAuthorship W4298068450A5032099577 @default.
- W4298068450 hasAuthorship W4298068450A5047884754 @default.
- W4298068450 hasBestOaLocation W42980684501 @default.
- W4298068450 hasConcept C114614502 @default.
- W4298068450 hasConcept C118615104 @default.
- W4298068450 hasConcept C134306372 @default.
- W4298068450 hasConcept C138885662 @default.
- W4298068450 hasConcept C198043062 @default.
- W4298068450 hasConcept C202444582 @default.
- W4298068450 hasConcept C207405024 @default.
- W4298068450 hasConcept C21031990 @default.
- W4298068450 hasConcept C2524010 @default.
- W4298068450 hasConcept C2778572836 @default.
- W4298068450 hasConcept C2780009758 @default.
- W4298068450 hasConcept C33923547 @default.
- W4298068450 hasConcept C41008148 @default.
- W4298068450 hasConcept C41895202 @default.
- W4298068450 hasConcept C55606962 @default.
- W4298068450 hasConcept C65236422 @default.
- W4298068450 hasConcept C70710897 @default.
- W4298068450 hasConcept C77088390 @default.
- W4298068450 hasConcept C82457910 @default.
- W4298068450 hasConcept C90673727 @default.
- W4298068450 hasConceptScore W4298068450C114614502 @default.
- W4298068450 hasConceptScore W4298068450C118615104 @default.
- W4298068450 hasConceptScore W4298068450C134306372 @default.
- W4298068450 hasConceptScore W4298068450C138885662 @default.
- W4298068450 hasConceptScore W4298068450C198043062 @default.
- W4298068450 hasConceptScore W4298068450C202444582 @default.
- W4298068450 hasConceptScore W4298068450C207405024 @default.
- W4298068450 hasConceptScore W4298068450C21031990 @default.
- W4298068450 hasConceptScore W4298068450C2524010 @default.
- W4298068450 hasConceptScore W4298068450C2778572836 @default.
- W4298068450 hasConceptScore W4298068450C2780009758 @default.
- W4298068450 hasConceptScore W4298068450C33923547 @default.
- W4298068450 hasConceptScore W4298068450C41008148 @default.
- W4298068450 hasConceptScore W4298068450C41895202 @default.
- W4298068450 hasConceptScore W4298068450C55606962 @default.
- W4298068450 hasConceptScore W4298068450C65236422 @default.
- W4298068450 hasConceptScore W4298068450C70710897 @default.
- W4298068450 hasConceptScore W4298068450C77088390 @default.
- W4298068450 hasConceptScore W4298068450C82457910 @default.
- W4298068450 hasConceptScore W4298068450C90673727 @default.
- W4298068450 hasLocation W42980684501 @default.
- W4298068450 hasLocation W42980684502 @default.
- W4298068450 hasOpenAccess W4298068450 @default.
- W4298068450 hasPrimaryLocation W42980684501 @default.
- W4298068450 hasRelatedWork W1567829109 @default.
- W4298068450 hasRelatedWork W2026692717 @default.
- W4298068450 hasRelatedWork W2056107007 @default.
- W4298068450 hasRelatedWork W2119794905 @default.
- W4298068450 hasRelatedWork W2135241635 @default.
- W4298068450 hasRelatedWork W2371991023 @default.
- W4298068450 hasRelatedWork W2380587429 @default.
- W4298068450 hasRelatedWork W3122956703 @default.
- W4298068450 hasRelatedWork W3128164686 @default.
- W4298068450 hasRelatedWork W4298068450 @default.
- W4298068450 isParatext "false" @default.
- W4298068450 isRetracted "false" @default.
- W4298068450 workType "article" @default.