Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298087208> ?p ?o ?g. }
- W4298087208 endingPage "7905" @default.
- W4298087208 startingPage "7895" @default.
- W4298087208 abstract "The emergence of SARS-CoV-2 and its variants that critically affect global public health requires characterization of mutations and their evolutionary pattern from specific Variants of Interest (VOIs) to Variants of Concern (VOCs). Leveraging the concept of equilibrium statistical mechanics, we introduce a new responsive quantity defined as “Mutational Response Function (MRF)” aptly quantifying domain-wise average entropy-fluctuation in the spike glycoprotein sequence of SARS-CoV-2 based on its evolutionary database. As the evolution transits from a specific variant to VOC, we find that the evolutionary crossover is accompanied by a dramatic change in MRF, upholding the characteristic of a dynamic phase transition. With this entropic information, we have developed an ancestral-based machine learning method that helps predict future domain-specific mutations. The feedforward binary classification model pinpoints possible residues prone to future mutations that have implications for enhanced fusogenicity and pathogenicity of the virus. We believe such MRF analyses followed by a statistical mechanics augmented ML approach could help track different evolutionary stages of such species and identify a critical evolutionary transition that is alarming." @default.
- W4298087208 created "2022-10-01" @default.
- W4298087208 creator A5005554864 @default.
- W4298087208 creator A5042452505 @default.
- W4298087208 creator A5057679136 @default.
- W4298087208 creator A5084378110 @default.
- W4298087208 date "2022-09-30" @default.
- W4298087208 modified "2023-10-14" @default.
- W4298087208 title "Quantifying Mutational Response to Track the Evolution of SARS-CoV-2 Spike Variants: Introducing a Statistical-Mechanics-Guided Machine Learning Method" @default.
- W4298087208 cites W1974017602 @default.
- W4298087208 cites W1979158913 @default.
- W4298087208 cites W1995875735 @default.
- W4298087208 cites W2009089643 @default.
- W4298087208 cites W2010125744 @default.
- W4298087208 cites W2054453390 @default.
- W4298087208 cites W2063625511 @default.
- W4298087208 cites W2083468430 @default.
- W4298087208 cites W2086435517 @default.
- W4298087208 cites W2090055713 @default.
- W4298087208 cites W2095904651 @default.
- W4298087208 cites W2099254366 @default.
- W4298087208 cites W2127774996 @default.
- W4298087208 cites W2166229627 @default.
- W4298087208 cites W2380358550 @default.
- W4298087208 cites W2403526834 @default.
- W4298087208 cites W2559258718 @default.
- W4298087208 cites W2760946358 @default.
- W4298087208 cites W2901995873 @default.
- W4298087208 cites W3001897055 @default.
- W4298087208 cites W3025832487 @default.
- W4298087208 cites W3037636255 @default.
- W4298087208 cites W3043431476 @default.
- W4298087208 cites W3047553716 @default.
- W4298087208 cites W3090723208 @default.
- W4298087208 cites W3093768302 @default.
- W4298087208 cites W3097126022 @default.
- W4298087208 cites W3101447922 @default.
- W4298087208 cites W3108015137 @default.
- W4298087208 cites W3113688533 @default.
- W4298087208 cites W3120190276 @default.
- W4298087208 cites W3122319697 @default.
- W4298087208 cites W3127143267 @default.
- W4298087208 cites W3127401064 @default.
- W4298087208 cites W3127999223 @default.
- W4298087208 cites W3131189073 @default.
- W4298087208 cites W3134208712 @default.
- W4298087208 cites W3135383916 @default.
- W4298087208 cites W3137510455 @default.
- W4298087208 cites W3142134382 @default.
- W4298087208 cites W3153955588 @default.
- W4298087208 cites W3156343712 @default.
- W4298087208 cites W3176238231 @default.
- W4298087208 cites W3196581551 @default.
- W4298087208 cites W3198407702 @default.
- W4298087208 cites W3202078088 @default.
- W4298087208 cites W3216478751 @default.
- W4298087208 cites W4200066927 @default.
- W4298087208 cites W4245326621 @default.
- W4298087208 cites W4299870202 @default.
- W4298087208 cites W590836531 @default.
- W4298087208 doi "https://doi.org/10.1021/acs.jpcb.2c04574" @default.
- W4298087208 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36178371" @default.
- W4298087208 hasPublicationYear "2022" @default.
- W4298087208 type Work @default.
- W4298087208 citedByCount "4" @default.
- W4298087208 countsByYear W42980872082022 @default.
- W4298087208 countsByYear W42980872082023 @default.
- W4298087208 crossrefType "journal-article" @default.
- W4298087208 hasAuthorship W4298087208A5005554864 @default.
- W4298087208 hasAuthorship W4298087208A5042452505 @default.
- W4298087208 hasAuthorship W4298087208A5057679136 @default.
- W4298087208 hasAuthorship W4298087208A5084378110 @default.
- W4298087208 hasBestOaLocation W42980872082 @default.
- W4298087208 hasConcept C104317684 @default.
- W4298087208 hasConcept C106301342 @default.
- W4298087208 hasConcept C119857082 @default.
- W4298087208 hasConcept C121332964 @default.
- W4298087208 hasConcept C121864883 @default.
- W4298087208 hasConcept C144024400 @default.
- W4298087208 hasConcept C149923435 @default.
- W4298087208 hasConcept C154945302 @default.
- W4298087208 hasConcept C171578705 @default.
- W4298087208 hasConcept C2908647359 @default.
- W4298087208 hasConcept C41008148 @default.
- W4298087208 hasConcept C501734568 @default.
- W4298087208 hasConcept C54355233 @default.
- W4298087208 hasConcept C62520636 @default.
- W4298087208 hasConcept C86803240 @default.
- W4298087208 hasConcept C99874945 @default.
- W4298087208 hasConceptScore W4298087208C104317684 @default.
- W4298087208 hasConceptScore W4298087208C106301342 @default.
- W4298087208 hasConceptScore W4298087208C119857082 @default.
- W4298087208 hasConceptScore W4298087208C121332964 @default.
- W4298087208 hasConceptScore W4298087208C121864883 @default.
- W4298087208 hasConceptScore W4298087208C144024400 @default.
- W4298087208 hasConceptScore W4298087208C149923435 @default.
- W4298087208 hasConceptScore W4298087208C154945302 @default.
- W4298087208 hasConceptScore W4298087208C171578705 @default.