Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298087644> ?p ?o ?g. }
- W4298087644 endingPage "e30113" @default.
- W4298087644 startingPage "e30113" @default.
- W4298087644 abstract "Millions of workers experience work-related ill health every year. The loss of working days often accounts for poor well-being because of discomfort and stress caused by the workplace. The ongoing pandemic and postpandemic shift in socioeconomic and work culture can continue to contribute to adverse work-related sentiments. Critically investigating state-of-the-art technologies, this study identifies the research gaps in recognizing workers' need for well-being support, and we aspire to understand how such evidence can be collected to transform the workforce and workplace.Building on recent advances in sentiment analysis, this study aims to closely examine the potential of social media as a tool to assess workers' emotions toward the workplace.This study collected a large Twitter data set comprising both pandemic and prepandemic tweets facilitated through a human-in-the-loop approach in combination with unsupervised learning and meta-heuristic optimization algorithms. The raw data preprocessed through natural language processing techniques were assessed using a generative statistical model and a lexicon-assisted rule-based model, mapping lexical features to emotion intensities. This study also assigned human annotations and performed work-related sentiment analysis.A mixed methods approach, including topic modeling using latent Dirichlet allocation, identified the top topics from the corpus to understand how Twitter users engage with discussions on work-related sentiments. The sorted aspects were portrayed through overlapped clusters and low intertopic distances. However, further analysis comprising the Valence Aware Dictionary for Sentiment Reasoner suggested a smaller number of negative polarities among diverse subjects. By contrast, the human-annotated data set created for this study contained more negative sentiments. In this study, sentimental juxtaposition revealed through the labeled data set was supported by the n-gram analysis as well.The developed data set demonstrates that work-related sentiments are projected onto social media, which offers an opportunity to better support workers. The infrastructure of the workplace, the nature of the work, the culture within the industry and the particular organization, employers, colleagues, person-specific habits, and upbringing all play a part in the health and well-being of any working adult who contributes to the productivity of the organization. Therefore, understanding the origin and influence of the complex underlying factors both qualitatively and quantitatively can inform the next generation of workplaces to drive positive change by relying on empirically grounded evidence. Therefore, this study outlines a comprehensive approach to capture deeper insights into work-related health." @default.
- W4298087644 created "2022-10-01" @default.
- W4298087644 creator A5023821943 @default.
- W4298087644 creator A5040302008 @default.
- W4298087644 creator A5046623402 @default.
- W4298087644 creator A5054783871 @default.
- W4298087644 creator A5069647515 @default.
- W4298087644 date "2022-09-30" @default.
- W4298087644 modified "2023-09-30" @default.
- W4298087644 title "Thinking Aloud or Screaming Inside: Exploratory Study of Sentiment Around Work" @default.
- W4298087644 cites W2041701920 @default.
- W4298087644 cites W2099813784 @default.
- W4298087644 cites W2157258619 @default.
- W4298087644 cites W2316873480 @default.
- W4298087644 cites W2591428653 @default.
- W4298087644 cites W2593658891 @default.
- W4298087644 cites W2619354375 @default.
- W4298087644 cites W2644717005 @default.
- W4298087644 cites W2738242267 @default.
- W4298087644 cites W2741976736 @default.
- W4298087644 cites W2760689087 @default.
- W4298087644 cites W2761423999 @default.
- W4298087644 cites W2778210192 @default.
- W4298087644 cites W2789810717 @default.
- W4298087644 cites W2791951997 @default.
- W4298087644 cites W2792445075 @default.
- W4298087644 cites W2797117791 @default.
- W4298087644 cites W2800884068 @default.
- W4298087644 cites W2801427155 @default.
- W4298087644 cites W2808416012 @default.
- W4298087644 cites W2814117743 @default.
- W4298087644 cites W2886130191 @default.
- W4298087644 cites W2886284872 @default.
- W4298087644 cites W2892009991 @default.
- W4298087644 cites W2898548574 @default.
- W4298087644 cites W2908500884 @default.
- W4298087644 cites W2910101226 @default.
- W4298087644 cites W2910630059 @default.
- W4298087644 cites W2961303963 @default.
- W4298087644 cites W2977330744 @default.
- W4298087644 cites W2982044261 @default.
- W4298087644 cites W2996636428 @default.
- W4298087644 cites W3004800568 @default.
- W4298087644 cites W3011931218 @default.
- W4298087644 cites W3014525701 @default.
- W4298087644 cites W3015173249 @default.
- W4298087644 cites W3020131378 @default.
- W4298087644 cites W3024667425 @default.
- W4298087644 cites W3025854195 @default.
- W4298087644 cites W3034713808 @default.
- W4298087644 cites W3035804726 @default.
- W4298087644 cites W3039124223 @default.
- W4298087644 cites W3044341606 @default.
- W4298087644 cites W3046402879 @default.
- W4298087644 cites W3088911387 @default.
- W4298087644 cites W3098885882 @default.
- W4298087644 cites W3122223234 @default.
- W4298087644 cites W3213662918 @default.
- W4298087644 cites W4205930438 @default.
- W4298087644 cites W4213083423 @default.
- W4298087644 cites W4220790135 @default.
- W4298087644 cites W4225087478 @default.
- W4298087644 doi "https://doi.org/10.2196/30113" @default.
- W4298087644 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36178712" @default.
- W4298087644 hasPublicationYear "2022" @default.
- W4298087644 type Work @default.
- W4298087644 citedByCount "0" @default.
- W4298087644 crossrefType "journal-article" @default.
- W4298087644 hasAuthorship W4298087644A5023821943 @default.
- W4298087644 hasAuthorship W4298087644A5040302008 @default.
- W4298087644 hasAuthorship W4298087644A5046623402 @default.
- W4298087644 hasAuthorship W4298087644A5054783871 @default.
- W4298087644 hasAuthorship W4298087644A5069647515 @default.
- W4298087644 hasBestOaLocation W42980876441 @default.
- W4298087644 hasConcept C136764020 @default.
- W4298087644 hasConcept C154945302 @default.
- W4298087644 hasConcept C15744967 @default.
- W4298087644 hasConcept C171686336 @default.
- W4298087644 hasConcept C177264268 @default.
- W4298087644 hasConcept C180747234 @default.
- W4298087644 hasConcept C199360897 @default.
- W4298087644 hasConcept C204321447 @default.
- W4298087644 hasConcept C2522767166 @default.
- W4298087644 hasConcept C2778121359 @default.
- W4298087644 hasConcept C41008148 @default.
- W4298087644 hasConcept C500882744 @default.
- W4298087644 hasConcept C518677369 @default.
- W4298087644 hasConcept C66402592 @default.
- W4298087644 hasConceptScore W4298087644C136764020 @default.
- W4298087644 hasConceptScore W4298087644C154945302 @default.
- W4298087644 hasConceptScore W4298087644C15744967 @default.
- W4298087644 hasConceptScore W4298087644C171686336 @default.
- W4298087644 hasConceptScore W4298087644C177264268 @default.
- W4298087644 hasConceptScore W4298087644C180747234 @default.
- W4298087644 hasConceptScore W4298087644C199360897 @default.
- W4298087644 hasConceptScore W4298087644C204321447 @default.
- W4298087644 hasConceptScore W4298087644C2522767166 @default.
- W4298087644 hasConceptScore W4298087644C2778121359 @default.