Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298090282> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4298090282 abstract "Point cloud registration is an important method in 3D point cloud processing, which is used in computer vision, autonomous driving, and other fields. Point cloud registration looks for the optimal rigid transformation that can align two input point clouds to a common coordinate system. The most common method of alignment using geometric characteristics is the Iterative Closest Point (ICP) algorithm. The disadvantage of classical ICP variants, such as pointto-point and point-to-plane, is their dependence on the initial placement of point clouds. If the rotation that can align two point clouds is sufficiently large, the ICP algorithm can converge to a local minimum. Coarse point clouds registration algorithms are used to find a suitable initial alignment of two clouds. In particular, feature-based methods for coarse registration are known. In this paper, we propose an algorithm to extract the common parts of the incongruent point clouds and coarsely aligning them. We use the SHOT algorithm to find a match between two point clouds. The corresponding neighborhoods are obtained by the correspondence between points. The neighborhoods define local vector bases that allow computing an orthogonal transformation. The proposed algorithm extracts common parts of incongruent point clouds. Computer simulation results are provided to illustrate the performance of the proposed method." @default.
- W4298090282 created "2022-10-01" @default.
- W4298090282 creator A5027723754 @default.
- W4298090282 creator A5041226309 @default.
- W4298090282 creator A5084788408 @default.
- W4298090282 creator A5088295953 @default.
- W4298090282 creator A5090107858 @default.
- W4298090282 date "2022-10-03" @default.
- W4298090282 modified "2023-09-27" @default.
- W4298090282 title "Clustering in coarse registration task and extraction of common parts of point clouds" @default.
- W4298090282 cites W1972485825 @default.
- W4298090282 cites W1993267444 @default.
- W4298090282 cites W2034950486 @default.
- W4298090282 cites W2049981393 @default.
- W4298090282 cites W2063549868 @default.
- W4298090282 cites W2094694151 @default.
- W4298090282 cites W2114065690 @default.
- W4298090282 cites W2128019145 @default.
- W4298090282 cites W2887099370 @default.
- W4298090282 cites W2997143732 @default.
- W4298090282 cites W3011700031 @default.
- W4298090282 cites W3205299416 @default.
- W4298090282 doi "https://doi.org/10.1117/12.2633548" @default.
- W4298090282 hasPublicationYear "2022" @default.
- W4298090282 type Work @default.
- W4298090282 citedByCount "1" @default.
- W4298090282 countsByYear W42980902822022 @default.
- W4298090282 crossrefType "proceedings-article" @default.
- W4298090282 hasAuthorship W4298090282A5027723754 @default.
- W4298090282 hasAuthorship W4298090282A5041226309 @default.
- W4298090282 hasAuthorship W4298090282A5084788408 @default.
- W4298090282 hasAuthorship W4298090282A5088295953 @default.
- W4298090282 hasAuthorship W4298090282A5090107858 @default.
- W4298090282 hasConcept C104317684 @default.
- W4298090282 hasConcept C11413529 @default.
- W4298090282 hasConcept C126795593 @default.
- W4298090282 hasConcept C131979681 @default.
- W4298090282 hasConcept C154945302 @default.
- W4298090282 hasConcept C185592680 @default.
- W4298090282 hasConcept C195958017 @default.
- W4298090282 hasConcept C200336642 @default.
- W4298090282 hasConcept C204241405 @default.
- W4298090282 hasConcept C2524010 @default.
- W4298090282 hasConcept C28719098 @default.
- W4298090282 hasConcept C31972630 @default.
- W4298090282 hasConcept C33923547 @default.
- W4298090282 hasConcept C41008148 @default.
- W4298090282 hasConcept C55493867 @default.
- W4298090282 hasConcept C73555534 @default.
- W4298090282 hasConcept C74050887 @default.
- W4298090282 hasConcept C80551277 @default.
- W4298090282 hasConceptScore W4298090282C104317684 @default.
- W4298090282 hasConceptScore W4298090282C11413529 @default.
- W4298090282 hasConceptScore W4298090282C126795593 @default.
- W4298090282 hasConceptScore W4298090282C131979681 @default.
- W4298090282 hasConceptScore W4298090282C154945302 @default.
- W4298090282 hasConceptScore W4298090282C185592680 @default.
- W4298090282 hasConceptScore W4298090282C195958017 @default.
- W4298090282 hasConceptScore W4298090282C200336642 @default.
- W4298090282 hasConceptScore W4298090282C204241405 @default.
- W4298090282 hasConceptScore W4298090282C2524010 @default.
- W4298090282 hasConceptScore W4298090282C28719098 @default.
- W4298090282 hasConceptScore W4298090282C31972630 @default.
- W4298090282 hasConceptScore W4298090282C33923547 @default.
- W4298090282 hasConceptScore W4298090282C41008148 @default.
- W4298090282 hasConceptScore W4298090282C55493867 @default.
- W4298090282 hasConceptScore W4298090282C73555534 @default.
- W4298090282 hasConceptScore W4298090282C74050887 @default.
- W4298090282 hasConceptScore W4298090282C80551277 @default.
- W4298090282 hasLocation W42980902821 @default.
- W4298090282 hasOpenAccess W4298090282 @default.
- W4298090282 hasPrimaryLocation W42980902821 @default.
- W4298090282 hasRelatedWork W2076606180 @default.
- W4298090282 hasRelatedWork W2164621176 @default.
- W4298090282 hasRelatedWork W2345502261 @default.
- W4298090282 hasRelatedWork W2616041509 @default.
- W4298090282 hasRelatedWork W2975427194 @default.
- W4298090282 hasRelatedWork W3204162010 @default.
- W4298090282 hasRelatedWork W4214932852 @default.
- W4298090282 hasRelatedWork W4281259481 @default.
- W4298090282 hasRelatedWork W4298090282 @default.
- W4298090282 hasRelatedWork W2085067995 @default.
- W4298090282 isParatext "false" @default.
- W4298090282 isRetracted "false" @default.
- W4298090282 workType "article" @default.