Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298091909> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4298091909 endingPage "10" @default.
- W4298091909 startingPage "1" @default.
- W4298091909 abstract "Over the years, with the widespread use of computer technology and the dramatic increase in electronic medical data, data-driven approaches to medical data analysis have emerged. However, the analysis of medical data remains challenging due to the mixed nature of the data, the incompleteness of many records, and the high level of noise. This paper proposes an improved neural network DBN-LSTM that combines a deep belief network (DBN) with a long short-term memory (LSTM) network. The subset of feature attributes processed by CFS-EGA is used for training, and the optimal selection test of the number of hidden layers is performed on the upper DBN in the process of training DBN-LSTM. At the same time, the validation set is combined to determine the hyperparameters of the LSTM. Construct the DNN, CNN, and long short-term memory (LSTM) network for comparative analysis with DBN-LSTM. Use the classification method to compare the average of the final results of the two experiments. The results show that the prediction accuracy of DBN-LSTM for cardiovascular and cerebrovascular diseases reaches 95.61%, which is higher than the three traditional neural networks." @default.
- W4298091909 created "2022-10-01" @default.
- W4298091909 creator A5016746295 @default.
- W4298091909 creator A5027972384 @default.
- W4298091909 date "2022-09-30" @default.
- W4298091909 modified "2023-09-27" @default.
- W4298091909 title "Deconstruction of Risk Prediction of Ischemic Cardiovascular and Cerebrovascular Diseases Based on Deep Learning" @default.
- W4298091909 cites W2568087550 @default.
- W4298091909 cites W2568113790 @default.
- W4298091909 cites W2883484631 @default.
- W4298091909 cites W2890401518 @default.
- W4298091909 cites W2894776090 @default.
- W4298091909 cites W2950373073 @default.
- W4298091909 cites W2989676283 @default.
- W4298091909 cites W2994741761 @default.
- W4298091909 cites W2996470210 @default.
- W4298091909 cites W2998421571 @default.
- W4298091909 cites W3025725275 @default.
- W4298091909 cites W3031295683 @default.
- W4298091909 cites W3034509176 @default.
- W4298091909 cites W3101716656 @default.
- W4298091909 cites W3119025102 @default.
- W4298091909 cites W3137303749 @default.
- W4298091909 cites W3155343525 @default.
- W4298091909 cites W3164065046 @default.
- W4298091909 cites W3180164722 @default.
- W4298091909 cites W3202879487 @default.
- W4298091909 cites W3214842348 @default.
- W4298091909 cites W4200158780 @default.
- W4298091909 cites W4200279117 @default.
- W4298091909 cites W4213011408 @default.
- W4298091909 doi "https://doi.org/10.1155/2022/8478835" @default.
- W4298091909 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36263000" @default.
- W4298091909 hasPublicationYear "2022" @default.
- W4298091909 type Work @default.
- W4298091909 citedByCount "1" @default.
- W4298091909 countsByYear W42980919092023 @default.
- W4298091909 crossrefType "journal-article" @default.
- W4298091909 hasAuthorship W4298091909A5016746295 @default.
- W4298091909 hasAuthorship W4298091909A5027972384 @default.
- W4298091909 hasBestOaLocation W42980919091 @default.
- W4298091909 hasConcept C108583219 @default.
- W4298091909 hasConcept C119857082 @default.
- W4298091909 hasConcept C133488467 @default.
- W4298091909 hasConcept C147168706 @default.
- W4298091909 hasConcept C148483581 @default.
- W4298091909 hasConcept C153180895 @default.
- W4298091909 hasConcept C154945302 @default.
- W4298091909 hasConcept C169903167 @default.
- W4298091909 hasConcept C177264268 @default.
- W4298091909 hasConcept C199360897 @default.
- W4298091909 hasConcept C2780801425 @default.
- W4298091909 hasConcept C41008148 @default.
- W4298091909 hasConcept C50644808 @default.
- W4298091909 hasConcept C58489278 @default.
- W4298091909 hasConcept C8642999 @default.
- W4298091909 hasConcept C97385483 @default.
- W4298091909 hasConceptScore W4298091909C108583219 @default.
- W4298091909 hasConceptScore W4298091909C119857082 @default.
- W4298091909 hasConceptScore W4298091909C133488467 @default.
- W4298091909 hasConceptScore W4298091909C147168706 @default.
- W4298091909 hasConceptScore W4298091909C148483581 @default.
- W4298091909 hasConceptScore W4298091909C153180895 @default.
- W4298091909 hasConceptScore W4298091909C154945302 @default.
- W4298091909 hasConceptScore W4298091909C169903167 @default.
- W4298091909 hasConceptScore W4298091909C177264268 @default.
- W4298091909 hasConceptScore W4298091909C199360897 @default.
- W4298091909 hasConceptScore W4298091909C2780801425 @default.
- W4298091909 hasConceptScore W4298091909C41008148 @default.
- W4298091909 hasConceptScore W4298091909C50644808 @default.
- W4298091909 hasConceptScore W4298091909C58489278 @default.
- W4298091909 hasConceptScore W4298091909C8642999 @default.
- W4298091909 hasConceptScore W4298091909C97385483 @default.
- W4298091909 hasLocation W42980919091 @default.
- W4298091909 hasLocation W42980919092 @default.
- W4298091909 hasLocation W42980919093 @default.
- W4298091909 hasOpenAccess W4298091909 @default.
- W4298091909 hasPrimaryLocation W42980919091 @default.
- W4298091909 hasRelatedWork W1501213224 @default.
- W4298091909 hasRelatedWork W2795261237 @default.
- W4298091909 hasRelatedWork W3099765033 @default.
- W4298091909 hasRelatedWork W3121832479 @default.
- W4298091909 hasRelatedWork W3123344745 @default.
- W4298091909 hasRelatedWork W4210841218 @default.
- W4298091909 hasRelatedWork W4293812307 @default.
- W4298091909 hasRelatedWork W4298091909 @default.
- W4298091909 hasRelatedWork W4302303815 @default.
- W4298091909 hasRelatedWork W4312200629 @default.
- W4298091909 hasVolume "2022" @default.
- W4298091909 isParatext "false" @default.
- W4298091909 isRetracted "false" @default.
- W4298091909 workType "article" @default.