Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298096310> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4298096310 abstract "Hurwitz numbers count genus $g$, degree $d$ covers of the complex projective line with fixed branched locus and fixed ramification data. An equivalent description is given by factorisations in the symmetric group. Simple double Hurwitz numbers are a class of Hurwitz-type counts of specific interest. In recent years a related counting problem in the context of random matrix theory was introduced as so-called monotone Hurwitz numbers. These can be viewed as a desymmetrised version of the Hurwitz-problem. A combinatorial interpolation between simple and monotone double Hurwitz numbers was introduced as mixed double Hurwitz numbers and it was proved that these objects are piecewise polynomial in a certain sense. Moreover, the notion of strictly monotone Hurwitz numbers has risen interest as it is equivalent to a certain Grothendieck dessins d'enfant count. In this paper, we introduce a combinatorial interpolation between simple, monotone and strictly monotone double Hurwitz numbers as textit{triply interpolated Hurwitz numbers}. Our aim is twofold: Using a connection between triply interpolated Hurwitz numbers and tropical covers in terms of so-called monodromy graphs, we give algorithms to compute the polynomials for triply interpolated Hurwitz numbers in all genera using Erhart theory. We further use this approach to study the wall-crossing behaviour of triply interpolated Hurwitz numbers in genus $0$ in terms of related Hurwitz-type counts. All those results specialise to the extremal cases of simple, monotone and Grothendieck dessins d'enfants Hurwitz numbers." @default.
- W4298096310 created "2022-10-01" @default.
- W4298096310 creator A5084938632 @default.
- W4298096310 date "2017-03-16" @default.
- W4298096310 modified "2023-10-17" @default.
- W4298096310 title "A monodromy graph approach to the piecewise polynomiality of simple, monotone and Grothendieck dessins d'enfants double Hurwitz numbers" @default.
- W4298096310 doi "https://doi.org/10.48550/arxiv.1703.05590" @default.
- W4298096310 hasPublicationYear "2017" @default.
- W4298096310 type Work @default.
- W4298096310 citedByCount "0" @default.
- W4298096310 crossrefType "posted-content" @default.
- W4298096310 hasAuthorship W4298096310A5084938632 @default.
- W4298096310 hasBestOaLocation W42980963101 @default.
- W4298096310 hasConcept C105795698 @default.
- W4298096310 hasConcept C111472728 @default.
- W4298096310 hasConcept C114614502 @default.
- W4298096310 hasConcept C117251300 @default.
- W4298096310 hasConcept C118615104 @default.
- W4298096310 hasConcept C120501884 @default.
- W4298096310 hasConcept C134306372 @default.
- W4298096310 hasConcept C1366977 @default.
- W4298096310 hasConcept C138885662 @default.
- W4298096310 hasConcept C177846678 @default.
- W4298096310 hasConcept C198931094 @default.
- W4298096310 hasConcept C202444582 @default.
- W4298096310 hasConcept C2524010 @default.
- W4298096310 hasConcept C2780586882 @default.
- W4298096310 hasConcept C2834757 @default.
- W4298096310 hasConcept C33923547 @default.
- W4298096310 hasConcept C75280867 @default.
- W4298096310 hasConcept C90119067 @default.
- W4298096310 hasConcept C90685605 @default.
- W4298096310 hasConcept C96403706 @default.
- W4298096310 hasConceptScore W4298096310C105795698 @default.
- W4298096310 hasConceptScore W4298096310C111472728 @default.
- W4298096310 hasConceptScore W4298096310C114614502 @default.
- W4298096310 hasConceptScore W4298096310C117251300 @default.
- W4298096310 hasConceptScore W4298096310C118615104 @default.
- W4298096310 hasConceptScore W4298096310C120501884 @default.
- W4298096310 hasConceptScore W4298096310C134306372 @default.
- W4298096310 hasConceptScore W4298096310C1366977 @default.
- W4298096310 hasConceptScore W4298096310C138885662 @default.
- W4298096310 hasConceptScore W4298096310C177846678 @default.
- W4298096310 hasConceptScore W4298096310C198931094 @default.
- W4298096310 hasConceptScore W4298096310C202444582 @default.
- W4298096310 hasConceptScore W4298096310C2524010 @default.
- W4298096310 hasConceptScore W4298096310C2780586882 @default.
- W4298096310 hasConceptScore W4298096310C2834757 @default.
- W4298096310 hasConceptScore W4298096310C33923547 @default.
- W4298096310 hasConceptScore W4298096310C75280867 @default.
- W4298096310 hasConceptScore W4298096310C90119067 @default.
- W4298096310 hasConceptScore W4298096310C90685605 @default.
- W4298096310 hasConceptScore W4298096310C96403706 @default.
- W4298096310 hasLocation W42980963101 @default.
- W4298096310 hasLocation W42980963102 @default.
- W4298096310 hasOpenAccess W4298096310 @default.
- W4298096310 hasPrimaryLocation W42980963101 @default.
- W4298096310 hasRelatedWork W1512070291 @default.
- W4298096310 hasRelatedWork W1568274927 @default.
- W4298096310 hasRelatedWork W1652604329 @default.
- W4298096310 hasRelatedWork W2073950904 @default.
- W4298096310 hasRelatedWork W2118483381 @default.
- W4298096310 hasRelatedWork W2119352446 @default.
- W4298096310 hasRelatedWork W2597981570 @default.
- W4298096310 hasRelatedWork W2887953665 @default.
- W4298096310 hasRelatedWork W2988289712 @default.
- W4298096310 hasRelatedWork W4298096310 @default.
- W4298096310 isParatext "false" @default.
- W4298096310 isRetracted "false" @default.
- W4298096310 workType "article" @default.