Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298122258> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4298122258 endingPage "9" @default.
- W4298122258 startingPage "1" @default.
- W4298122258 abstract "This paper introduces a time-varying wastage maximum flow problem (TWMFP) and proposes a time-flow neural network (TFNN) for solving the TWMFPs. The time-varying wastage maximum flow problem is concerned with finding the maximum flow in a network with time-varying arc capacities and additive flow losses on the arcs. This problem has multiple applications in transportation, communication, and financial network. For example, solving the maximum traffic flow of the transportation network and the maximum profit of the financial network. Unlike traditional neural network algorithms, the proposed TFNN does not require any training by means of its time-flow mechanism. The time-flow mechanism is realized by each active neuron sending pulses to its successor neurons. In order to maximize the network flow, the proposed TFNN can be divided into two parts: path-pulse neural networks (PPNNs) and subnet-flow neural networks (SFNN). PPNN is to generate two subnet sets (viz. with wastage arcs and without), and SFNN is to find the maximum flow value of each subnet. The subnet computing strategy of the proposed algorithm greatly improves the solution accuracy of TWMFPs. Theoretical analysis and experiments have proved the effectiveness of TFNN. The experiment results of the transportation network (viz. New York Road) show that the proposed TFNN has better performance (viz. error rate and computational time) compared to classical algorithms." @default.
- W4298122258 created "2022-10-01" @default.
- W4298122258 creator A5001070625 @default.
- W4298122258 creator A5068378368 @default.
- W4298122258 creator A5077885354 @default.
- W4298122258 date "2022-09-30" @default.
- W4298122258 modified "2023-10-14" @default.
- W4298122258 title "A Novel Maximum Flow Algorithm with Neural Network for Time-Varying Wastage Networks" @default.
- W4298122258 cites W102815760 @default.
- W4298122258 cites W1485230108 @default.
- W4298122258 cites W1982576298 @default.
- W4298122258 cites W1985635003 @default.
- W4298122258 cites W2000383711 @default.
- W4298122258 cites W2004775670 @default.
- W4298122258 cites W2093348135 @default.
- W4298122258 cites W2124803259 @default.
- W4298122258 cites W2143374835 @default.
- W4298122258 cites W2330368785 @default.
- W4298122258 cites W2584829278 @default.
- W4298122258 cites W2741786970 @default.
- W4298122258 cites W2755686656 @default.
- W4298122258 cites W2885485549 @default.
- W4298122258 cites W2896208389 @default.
- W4298122258 cites W2904644177 @default.
- W4298122258 cites W2910963498 @default.
- W4298122258 cites W2963344837 @default.
- W4298122258 cites W2965269844 @default.
- W4298122258 cites W3164875280 @default.
- W4298122258 cites W3184157472 @default.
- W4298122258 cites W3200003979 @default.
- W4298122258 cites W3204595986 @default.
- W4298122258 cites W4224609752 @default.
- W4298122258 cites W4281256337 @default.
- W4298122258 doi "https://doi.org/10.1155/2022/3782761" @default.
- W4298122258 hasPublicationYear "2022" @default.
- W4298122258 type Work @default.
- W4298122258 citedByCount "1" @default.
- W4298122258 countsByYear W42981222582023 @default.
- W4298122258 crossrefType "journal-article" @default.
- W4298122258 hasAuthorship W4298122258A5001070625 @default.
- W4298122258 hasAuthorship W4298122258A5068378368 @default.
- W4298122258 hasAuthorship W4298122258A5077885354 @default.
- W4298122258 hasBestOaLocation W42981222581 @default.
- W4298122258 hasConcept C11413529 @default.
- W4298122258 hasConcept C114809511 @default.
- W4298122258 hasConcept C126255220 @default.
- W4298122258 hasConcept C154945302 @default.
- W4298122258 hasConcept C157469704 @default.
- W4298122258 hasConcept C170334043 @default.
- W4298122258 hasConcept C21099817 @default.
- W4298122258 hasConcept C2524010 @default.
- W4298122258 hasConcept C31258907 @default.
- W4298122258 hasConcept C33923547 @default.
- W4298122258 hasConcept C38349280 @default.
- W4298122258 hasConcept C41008148 @default.
- W4298122258 hasConcept C50644808 @default.
- W4298122258 hasConceptScore W4298122258C11413529 @default.
- W4298122258 hasConceptScore W4298122258C114809511 @default.
- W4298122258 hasConceptScore W4298122258C126255220 @default.
- W4298122258 hasConceptScore W4298122258C154945302 @default.
- W4298122258 hasConceptScore W4298122258C157469704 @default.
- W4298122258 hasConceptScore W4298122258C170334043 @default.
- W4298122258 hasConceptScore W4298122258C21099817 @default.
- W4298122258 hasConceptScore W4298122258C2524010 @default.
- W4298122258 hasConceptScore W4298122258C31258907 @default.
- W4298122258 hasConceptScore W4298122258C33923547 @default.
- W4298122258 hasConceptScore W4298122258C38349280 @default.
- W4298122258 hasConceptScore W4298122258C41008148 @default.
- W4298122258 hasConceptScore W4298122258C50644808 @default.
- W4298122258 hasFunder F4320321001 @default.
- W4298122258 hasLocation W42981222581 @default.
- W4298122258 hasOpenAccess W4298122258 @default.
- W4298122258 hasPrimaryLocation W42981222581 @default.
- W4298122258 hasRelatedWork W184565551 @default.
- W4298122258 hasRelatedWork W1851375266 @default.
- W4298122258 hasRelatedWork W2012591890 @default.
- W4298122258 hasRelatedWork W2590727506 @default.
- W4298122258 hasRelatedWork W3000598246 @default.
- W4298122258 hasRelatedWork W3023146478 @default.
- W4298122258 hasRelatedWork W3141113327 @default.
- W4298122258 hasRelatedWork W4206915070 @default.
- W4298122258 hasRelatedWork W4311255633 @default.
- W4298122258 hasRelatedWork W4381333972 @default.
- W4298122258 hasVolume "2022" @default.
- W4298122258 isParatext "false" @default.
- W4298122258 isRetracted "false" @default.
- W4298122258 workType "article" @default.