Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298128422> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4298128422 abstract "The theory of valued difference fields $(K, sigma, v)$ depends on how the valuation $v$ interacts with the automorphism $sigma$. Two special cases have already been worked out - the isometric case, where $v(sigma(x)) = v(x)$ for all $xin K$, has been worked out by Luc Belair, Angus Macintyre and Thomas Scanlon; and the contractive case, where $v(sigma(x)) > ncdot v(x)$ for all $ninmathbb{N}$ and $xin K^times$ with $v(x) > 0$, has been worked out by Salih Azgin. In this paper we deal with a more general version, called the multiplicative case, where $v(sigma(x)) = rhocdot v(x)$, where $rho (> 0)$ is interpreted as an element of a real-closed field. We give an axiomatization and prove a relative quantifier elimination theorem for such a theory." @default.
- W4298128422 created "2022-10-01" @default.
- W4298128422 creator A5069402702 @default.
- W4298128422 date "2010-11-07" @default.
- W4298128422 modified "2023-09-28" @default.
- W4298128422 title "Multiplicative Valued Difference Fields" @default.
- W4298128422 doi "https://doi.org/10.48550/arxiv.1011.1655" @default.
- W4298128422 hasPublicationYear "2010" @default.
- W4298128422 type Work @default.
- W4298128422 citedByCount "0" @default.
- W4298128422 crossrefType "posted-content" @default.
- W4298128422 hasAuthorship W4298128422A5069402702 @default.
- W4298128422 hasBestOaLocation W42981284221 @default.
- W4298128422 hasConcept C10138342 @default.
- W4298128422 hasConcept C114614502 @default.
- W4298128422 hasConcept C118615104 @default.
- W4298128422 hasConcept C118712358 @default.
- W4298128422 hasConcept C121332964 @default.
- W4298128422 hasConcept C134306372 @default.
- W4298128422 hasConcept C162324750 @default.
- W4298128422 hasConcept C186027771 @default.
- W4298128422 hasConcept C202444582 @default.
- W4298128422 hasConcept C2778049214 @default.
- W4298128422 hasConcept C33923547 @default.
- W4298128422 hasConcept C42747912 @default.
- W4298128422 hasConcept C62520636 @default.
- W4298128422 hasConcept C92788228 @default.
- W4298128422 hasConcept C9652623 @default.
- W4298128422 hasConceptScore W4298128422C10138342 @default.
- W4298128422 hasConceptScore W4298128422C114614502 @default.
- W4298128422 hasConceptScore W4298128422C118615104 @default.
- W4298128422 hasConceptScore W4298128422C118712358 @default.
- W4298128422 hasConceptScore W4298128422C121332964 @default.
- W4298128422 hasConceptScore W4298128422C134306372 @default.
- W4298128422 hasConceptScore W4298128422C162324750 @default.
- W4298128422 hasConceptScore W4298128422C186027771 @default.
- W4298128422 hasConceptScore W4298128422C202444582 @default.
- W4298128422 hasConceptScore W4298128422C2778049214 @default.
- W4298128422 hasConceptScore W4298128422C33923547 @default.
- W4298128422 hasConceptScore W4298128422C42747912 @default.
- W4298128422 hasConceptScore W4298128422C62520636 @default.
- W4298128422 hasConceptScore W4298128422C92788228 @default.
- W4298128422 hasConceptScore W4298128422C9652623 @default.
- W4298128422 hasLocation W42981284221 @default.
- W4298128422 hasOpenAccess W4298128422 @default.
- W4298128422 hasPrimaryLocation W42981284221 @default.
- W4298128422 hasRelatedWork W2037275867 @default.
- W4298128422 hasRelatedWork W2127459735 @default.
- W4298128422 hasRelatedWork W2264849344 @default.
- W4298128422 hasRelatedWork W2352183082 @default.
- W4298128422 hasRelatedWork W2507715521 @default.
- W4298128422 hasRelatedWork W2735468436 @default.
- W4298128422 hasRelatedWork W2962946903 @default.
- W4298128422 hasRelatedWork W2963928874 @default.
- W4298128422 hasRelatedWork W3099928391 @default.
- W4298128422 hasRelatedWork W4301858165 @default.
- W4298128422 isParatext "false" @default.
- W4298128422 isRetracted "false" @default.
- W4298128422 workType "article" @default.