Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298130329> ?p ?o ?g. }
- W4298130329 endingPage "116282" @default.
- W4298130329 startingPage "116282" @default.
- W4298130329 abstract "The prediction of air pollution plays an important role in reducing the emission of air pollutants and guiding people to carry out early warning and control, so it attracts many scholars to conduct modeling and research on it. However, most of the current researches fail to quantify the uncertainty in prediction and only use traditional fuzzy information granulation to process data, resulting in the loss of much detail information. Therefore, this paper proposes a hybrid model based on decomposition and granular fuzzy information to solve these problems. The trend item and the Granulation fluctuation item are respectively predicted and the results are combined to obtain the change trend and fluctuation range of the sequence. This paper selects PM2.5 concentrations of 3 cities. The experimental results show that the evaluation index of the prediction model is significantly lower than other benchmark models, and a variety of statistical methods are used to further verify the effectiveness of the prediction model." @default.
- W4298130329 created "2022-10-01" @default.
- W4298130329 creator A5013869549 @default.
- W4298130329 creator A5044720245 @default.
- W4298130329 creator A5056493288 @default.
- W4298130329 creator A5078021973 @default.
- W4298130329 creator A5087555515 @default.
- W4298130329 date "2022-12-01" @default.
- W4298130329 modified "2023-10-12" @default.
- W4298130329 title "Uncertainty quantification of PM2.5 concentrations using a hybrid model based on characteristic decomposition and fuzzy granulation" @default.
- W4298130329 cites W1966544507 @default.
- W4298130329 cites W2064675550 @default.
- W4298130329 cites W2076485554 @default.
- W4298130329 cites W2079735306 @default.
- W4298130329 cites W2092643666 @default.
- W4298130329 cites W2116237065 @default.
- W4298130329 cites W2128084896 @default.
- W4298130329 cites W2134265359 @default.
- W4298130329 cites W2153676086 @default.
- W4298130329 cites W2165171393 @default.
- W4298130329 cites W2202633057 @default.
- W4298130329 cites W2331700789 @default.
- W4298130329 cites W2338736535 @default.
- W4298130329 cites W2345862676 @default.
- W4298130329 cites W2543678400 @default.
- W4298130329 cites W2793017755 @default.
- W4298130329 cites W2807695771 @default.
- W4298130329 cites W2809462163 @default.
- W4298130329 cites W2886499297 @default.
- W4298130329 cites W2902972470 @default.
- W4298130329 cites W2907184742 @default.
- W4298130329 cites W2912757531 @default.
- W4298130329 cites W2940272872 @default.
- W4298130329 cites W2943903955 @default.
- W4298130329 cites W2945021180 @default.
- W4298130329 cites W2948535221 @default.
- W4298130329 cites W2963188571 @default.
- W4298130329 cites W2989603979 @default.
- W4298130329 cites W3004627076 @default.
- W4298130329 cites W3023064465 @default.
- W4298130329 cites W3098296868 @default.
- W4298130329 cites W3170916651 @default.
- W4298130329 cites W3173810343 @default.
- W4298130329 cites W3195657801 @default.
- W4298130329 cites W3196698200 @default.
- W4298130329 cites W4200603906 @default.
- W4298130329 cites W4224510344 @default.
- W4298130329 cites W4234406933 @default.
- W4298130329 cites W590735017 @default.
- W4298130329 doi "https://doi.org/10.1016/j.jenvman.2022.116282" @default.
- W4298130329 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36191506" @default.
- W4298130329 hasPublicationYear "2022" @default.
- W4298130329 type Work @default.
- W4298130329 citedByCount "2" @default.
- W4298130329 countsByYear W42981303292023 @default.
- W4298130329 crossrefType "journal-article" @default.
- W4298130329 hasAuthorship W4298130329A5013869549 @default.
- W4298130329 hasAuthorship W4298130329A5044720245 @default.
- W4298130329 hasAuthorship W4298130329A5056493288 @default.
- W4298130329 hasAuthorship W4298130329A5078021973 @default.
- W4298130329 hasAuthorship W4298130329A5087555515 @default.
- W4298130329 hasConcept C111919701 @default.
- W4298130329 hasConcept C124101348 @default.
- W4298130329 hasConcept C124681953 @default.
- W4298130329 hasConcept C127413603 @default.
- W4298130329 hasConcept C13280743 @default.
- W4298130329 hasConcept C146978453 @default.
- W4298130329 hasConcept C154945302 @default.
- W4298130329 hasConcept C178790620 @default.
- W4298130329 hasConcept C185592680 @default.
- W4298130329 hasConcept C185798385 @default.
- W4298130329 hasConcept C187320778 @default.
- W4298130329 hasConcept C204323151 @default.
- W4298130329 hasConcept C205649164 @default.
- W4298130329 hasConcept C39432304 @default.
- W4298130329 hasConcept C41008148 @default.
- W4298130329 hasConcept C58166 @default.
- W4298130329 hasConcept C88463166 @default.
- W4298130329 hasConcept C98045186 @default.
- W4298130329 hasConceptScore W4298130329C111919701 @default.
- W4298130329 hasConceptScore W4298130329C124101348 @default.
- W4298130329 hasConceptScore W4298130329C124681953 @default.
- W4298130329 hasConceptScore W4298130329C127413603 @default.
- W4298130329 hasConceptScore W4298130329C13280743 @default.
- W4298130329 hasConceptScore W4298130329C146978453 @default.
- W4298130329 hasConceptScore W4298130329C154945302 @default.
- W4298130329 hasConceptScore W4298130329C178790620 @default.
- W4298130329 hasConceptScore W4298130329C185592680 @default.
- W4298130329 hasConceptScore W4298130329C185798385 @default.
- W4298130329 hasConceptScore W4298130329C187320778 @default.
- W4298130329 hasConceptScore W4298130329C204323151 @default.
- W4298130329 hasConceptScore W4298130329C205649164 @default.
- W4298130329 hasConceptScore W4298130329C39432304 @default.
- W4298130329 hasConceptScore W4298130329C41008148 @default.
- W4298130329 hasConceptScore W4298130329C58166 @default.
- W4298130329 hasConceptScore W4298130329C88463166 @default.
- W4298130329 hasConceptScore W4298130329C98045186 @default.
- W4298130329 hasFunder F4320326290 @default.