Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298136665> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4298136665 abstract "Summary Gaussian Process models have been proposed as statistical models that allow interpolation between existing data points. One advantage of this approach is that the Gaussian process model includes an estimate of the accuracy of the predicted expected value at any point within the parameter space, unlike direct interpolators often used as proxy models. When used as part of an optimisation process we can use the Gaussian process model to eliminate those areas where we have high confidence that the optimal solution will not be found. This allows the efficient targeting of resources on those areas of parameter space that could yield the optimal solution, and also facilitates a more global analysis of the parameter space. Gaussian Processes naturally provide clear visualisation of the objective surface at various stages of the optimisation, which generates insight into the optimisation process sometimes lacking in alternative approaches, and thus facilitate human validation/intervention if desired. To understand the theoretical basis of the approach requires a level of statistical knowledge that is not commonly found outside of the statistics community, which may have inhibited uptake. However, the approach can be easily implemented from first principles in python, using a recipe by Rasmussen and Williams, without needing a deep understand of the theoretical underpinning. The recipe has a small number of controls that need to be set by the user. In this paper we construct empirical models of the effect of these controls on the interpolation and explain their limitations from a theoretical perspective. We explore how dynamic adjustment of the controls might be used as part of an optimisation scheme. We apply our approach to the well placement optimisation problem. The reservoir model used for the exercise is the PUNQ Complex Model, which is a 2.4 million cell representation of a BRENT sequence reservoir. A combination of producers and injectors are sequentially placed in the model using a greedy algorithm with the optimal position at each iteration being selected using the Gaussian Process model as a proxy for the true objective surface. The result is compared to a manually derived solution by an experienced reservoir engineer which required 22 wells. The result obtained by this approach reaches the same level of performance using only 18 wells." @default.
- W4298136665 created "2022-10-01" @default.
- W4298136665 creator A5029744486 @default.
- W4298136665 creator A5041945355 @default.
- W4298136665 date "2022-01-01" @default.
- W4298136665 modified "2023-09-27" @default.
- W4298136665 title "Gaussian Process Models for Well Placement Optimisation" @default.
- W4298136665 doi "https://doi.org/10.3997/2214-4609.202244028" @default.
- W4298136665 hasPublicationYear "2022" @default.
- W4298136665 type Work @default.
- W4298136665 citedByCount "0" @default.
- W4298136665 crossrefType "proceedings-article" @default.
- W4298136665 hasAuthorship W4298136665A5029744486 @default.
- W4298136665 hasAuthorship W4298136665A5041945355 @default.
- W4298136665 hasConcept C104114177 @default.
- W4298136665 hasConcept C105795698 @default.
- W4298136665 hasConcept C111919701 @default.
- W4298136665 hasConcept C11413529 @default.
- W4298136665 hasConcept C119857082 @default.
- W4298136665 hasConcept C121332964 @default.
- W4298136665 hasConcept C124101348 @default.
- W4298136665 hasConcept C126255220 @default.
- W4298136665 hasConcept C137800194 @default.
- W4298136665 hasConcept C154945302 @default.
- W4298136665 hasConcept C163716315 @default.
- W4298136665 hasConcept C33923547 @default.
- W4298136665 hasConcept C41008148 @default.
- W4298136665 hasConcept C519991488 @default.
- W4298136665 hasConcept C61326573 @default.
- W4298136665 hasConcept C62520636 @default.
- W4298136665 hasConcept C73586568 @default.
- W4298136665 hasConcept C88871306 @default.
- W4298136665 hasConcept C98045186 @default.
- W4298136665 hasConceptScore W4298136665C104114177 @default.
- W4298136665 hasConceptScore W4298136665C105795698 @default.
- W4298136665 hasConceptScore W4298136665C111919701 @default.
- W4298136665 hasConceptScore W4298136665C11413529 @default.
- W4298136665 hasConceptScore W4298136665C119857082 @default.
- W4298136665 hasConceptScore W4298136665C121332964 @default.
- W4298136665 hasConceptScore W4298136665C124101348 @default.
- W4298136665 hasConceptScore W4298136665C126255220 @default.
- W4298136665 hasConceptScore W4298136665C137800194 @default.
- W4298136665 hasConceptScore W4298136665C154945302 @default.
- W4298136665 hasConceptScore W4298136665C163716315 @default.
- W4298136665 hasConceptScore W4298136665C33923547 @default.
- W4298136665 hasConceptScore W4298136665C41008148 @default.
- W4298136665 hasConceptScore W4298136665C519991488 @default.
- W4298136665 hasConceptScore W4298136665C61326573 @default.
- W4298136665 hasConceptScore W4298136665C62520636 @default.
- W4298136665 hasConceptScore W4298136665C73586568 @default.
- W4298136665 hasConceptScore W4298136665C88871306 @default.
- W4298136665 hasConceptScore W4298136665C98045186 @default.
- W4298136665 hasLocation W42981366651 @default.
- W4298136665 hasOpenAccess W4298136665 @default.
- W4298136665 hasPrimaryLocation W42981366651 @default.
- W4298136665 hasRelatedWork W2801697832 @default.
- W4298136665 hasRelatedWork W2884745705 @default.
- W4298136665 hasRelatedWork W2889453578 @default.
- W4298136665 hasRelatedWork W2891993883 @default.
- W4298136665 hasRelatedWork W2979801952 @default.
- W4298136665 hasRelatedWork W3035800748 @default.
- W4298136665 hasRelatedWork W3091648941 @default.
- W4298136665 hasRelatedWork W3104768730 @default.
- W4298136665 hasRelatedWork W4285225238 @default.
- W4298136665 hasRelatedWork W4285815787 @default.
- W4298136665 isParatext "false" @default.
- W4298136665 isRetracted "false" @default.
- W4298136665 workType "article" @default.