Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298145914> ?p ?o ?g. }
- W4298145914 abstract "The impact of climate change on the environment has become increasingly visible today, and foreseeing future climate events, which involves long-term prediction of climate variables (e.g., temperature, wind speed, precipitation, etc.) at a local small scale in a local region, is crucial for disaster risk management. General Circulation Models (GCMs) allow for the simulation of multiple climate variables, decades into the future (often till the year 2100). GCM simulations, however, are at a global large scale (from 100 km to 600 km) and are too coarse to monitor climate change at the local small scale. Statistical downscaling approaches are often applied to the GCM simulations to allow the evaluation of the GCM outputs at the local scale. Machine learning-based techniques are popular approaches for statistical downscaling. In this paper, we provide an overview of GCM downscaling with machine learning and present a case study that leverages deep learning to downscale weekly averages of the daily minimum and maximum temperatures in the Hackensack–Passaic watershed in New Jersey." @default.
- W4298145914 created "2022-10-01" @default.
- W4298145914 creator A5004732749 @default.
- W4298145914 creator A5023945944 @default.
- W4298145914 creator A5034277927 @default.
- W4298145914 creator A5048884728 @default.
- W4298145914 creator A5080182780 @default.
- W4298145914 date "2022-09-30" @default.
- W4298145914 modified "2023-10-07" @default.
- W4298145914 title "Deep Learning-Based Downscaling of Temperatures for Monitoring Local Climate Change Using Global Climate Simulation Data" @default.
- W4298145914 cites W11997482 @default.
- W4298145914 cites W1698050372 @default.
- W4298145914 cites W2008523681 @default.
- W4298145914 cites W2018410757 @default.
- W4298145914 cites W2023172093 @default.
- W4298145914 cites W2029604816 @default.
- W4298145914 cites W2033186302 @default.
- W4298145914 cites W2033904036 @default.
- W4298145914 cites W2042320239 @default.
- W4298145914 cites W2053128000 @default.
- W4298145914 cites W2068689590 @default.
- W4298145914 cites W2076132436 @default.
- W4298145914 cites W2091848193 @default.
- W4298145914 cites W2139433170 @default.
- W4298145914 cites W2147733258 @default.
- W4298145914 cites W2160815625 @default.
- W4298145914 cites W2170649325 @default.
- W4298145914 cites W2179874655 @default.
- W4298145914 cites W2180458389 @default.
- W4298145914 cites W2301692565 @default.
- W4298145914 cites W2471563814 @default.
- W4298145914 cites W2523276336 @default.
- W4298145914 cites W2529239031 @default.
- W4298145914 cites W2607162077 @default.
- W4298145914 cites W2626930333 @default.
- W4298145914 cites W2769404436 @default.
- W4298145914 cites W2807107999 @default.
- W4298145914 cites W2807236430 @default.
- W4298145914 cites W2807283265 @default.
- W4298145914 cites W2888845200 @default.
- W4298145914 cites W2889852608 @default.
- W4298145914 cites W2914802281 @default.
- W4298145914 cites W2946010671 @default.
- W4298145914 cites W2962940008 @default.
- W4298145914 cites W2963240573 @default.
- W4298145914 cites W2981977644 @default.
- W4298145914 cites W3003728117 @default.
- W4298145914 cites W3009276176 @default.
- W4298145914 cites W3021949577 @default.
- W4298145914 cites W3034123291 @default.
- W4298145914 cites W3042959233 @default.
- W4298145914 cites W3044232223 @default.
- W4298145914 cites W3139427994 @default.
- W4298145914 cites W3146366485 @default.
- W4298145914 cites W3157154930 @default.
- W4298145914 cites W3211983116 @default.
- W4298145914 cites W3213783748 @default.
- W4298145914 cites W4200330236 @default.
- W4298145914 cites W4206209937 @default.
- W4298145914 doi "https://doi.org/10.1142/s2811032322500011" @default.
- W4298145914 hasPublicationYear "2022" @default.
- W4298145914 type Work @default.
- W4298145914 citedByCount "2" @default.
- W4298145914 countsByYear W42981459142023 @default.
- W4298145914 crossrefType "journal-article" @default.
- W4298145914 hasAuthorship W4298145914A5004732749 @default.
- W4298145914 hasAuthorship W4298145914A5023945944 @default.
- W4298145914 hasAuthorship W4298145914A5034277927 @default.
- W4298145914 hasAuthorship W4298145914A5048884728 @default.
- W4298145914 hasAuthorship W4298145914A5080182780 @default.
- W4298145914 hasConcept C107054158 @default.
- W4298145914 hasConcept C111368507 @default.
- W4298145914 hasConcept C119857082 @default.
- W4298145914 hasConcept C127313418 @default.
- W4298145914 hasConcept C132651083 @default.
- W4298145914 hasConcept C141452985 @default.
- W4298145914 hasConcept C143742823 @default.
- W4298145914 hasConcept C150547873 @default.
- W4298145914 hasConcept C153294291 @default.
- W4298145914 hasConcept C168754636 @default.
- W4298145914 hasConcept C205649164 @default.
- W4298145914 hasConcept C2778755073 @default.
- W4298145914 hasConcept C39432304 @default.
- W4298145914 hasConcept C41008148 @default.
- W4298145914 hasConcept C41156917 @default.
- W4298145914 hasConcept C49204034 @default.
- W4298145914 hasConcept C58640448 @default.
- W4298145914 hasConceptScore W4298145914C107054158 @default.
- W4298145914 hasConceptScore W4298145914C111368507 @default.
- W4298145914 hasConceptScore W4298145914C119857082 @default.
- W4298145914 hasConceptScore W4298145914C127313418 @default.
- W4298145914 hasConceptScore W4298145914C132651083 @default.
- W4298145914 hasConceptScore W4298145914C141452985 @default.
- W4298145914 hasConceptScore W4298145914C143742823 @default.
- W4298145914 hasConceptScore W4298145914C150547873 @default.
- W4298145914 hasConceptScore W4298145914C153294291 @default.
- W4298145914 hasConceptScore W4298145914C168754636 @default.
- W4298145914 hasConceptScore W4298145914C205649164 @default.
- W4298145914 hasConceptScore W4298145914C2778755073 @default.
- W4298145914 hasConceptScore W4298145914C39432304 @default.