Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298148947> ?p ?o ?g. }
- W4298148947 endingPage "111528" @default.
- W4298148947 startingPage "111528" @default.
- W4298148947 abstract "•Monoclonal antibodies are isolated from COVID-19 convalescent patients•NA8 and NE12 potently neutralize newly emerging SARS-CoV-2 variants of concern•Structural analysis reveals a unique conserved binding epitope for NA8•NA8 and NE12 show prophylactic and therapeutic efficacy in the Syrian hamster model The emergence and global spread of the SARS-CoV-2 Omicron variants, which carry an unprecedented number of mutations, raise serious concerns due to the reduced efficacy of current vaccines and resistance to therapeutic antibodies. Here, we report the generation and characterization of two potent human monoclonal antibodies, NA8 and NE12, against the receptor-binding domain of the SARS-CoV-2 spike protein. NA8 interacts with a highly conserved region and has a breadth of neutralization with picomolar potency against the Beta variant and the Omicron BA.1 and BA.2 sublineages and nanomolar potency against BA.2.12.1 and BA.4. Combination of NA8 and NE12 retains potent neutralizing activity against the major SARS-CoV-2 variants of concern. Cryo-EM analysis provides the structural basis for the broad and complementary neutralizing activity of these two antibodies. We confirm the in vivo protective and therapeutic efficacies of NA8 and NE12 in the hamster model. These results show that broad and potent human antibodies can overcome the continuous immune escape of evolving SARS-CoV-2 variants. The emergence and global spread of the SARS-CoV-2 Omicron variants, which carry an unprecedented number of mutations, raise serious concerns due to the reduced efficacy of current vaccines and resistance to therapeutic antibodies. Here, we report the generation and characterization of two potent human monoclonal antibodies, NA8 and NE12, against the receptor-binding domain of the SARS-CoV-2 spike protein. NA8 interacts with a highly conserved region and has a breadth of neutralization with picomolar potency against the Beta variant and the Omicron BA.1 and BA.2 sublineages and nanomolar potency against BA.2.12.1 and BA.4. Combination of NA8 and NE12 retains potent neutralizing activity against the major SARS-CoV-2 variants of concern. Cryo-EM analysis provides the structural basis for the broad and complementary neutralizing activity of these two antibodies. We confirm the in vivo protective and therapeutic efficacies of NA8 and NE12 in the hamster model. These results show that broad and potent human antibodies can overcome the continuous immune escape of evolving SARS-CoV-2 variants. IntroductionThe ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered a devastating global health, social, and economic crisis, with more than 1 million deaths in the United States and over 6.5 million worldwide (https://coronavirus.jhu.edu; The Johns Hopkins Coronavirus Resource Center Home Page, 2022). Effective vaccines against SARS-CoV-2 have been developed and deployed at an unprecedented pace, but hesitancy in vaccination and a limited supply in developing countries have made the fight against SARS-CoV-2 particularly challenging. The RNA nature and broad circulation of this virus enable the accumulation of mutations (Telenti et al., 2021Telenti A. Arvin A. Corey L. Corti D. Diamond M.S. García-Sastre A. Garry R.F. Holmes E.C. Pang P.S. Virgin H.W. After the pandemic: perspectives on the future trajectory of COVID-19.Nature. 2021; 596: 495-504https://doi.org/10.1038/s41586-021-03792-wCrossref PubMed Scopus (106) Google Scholar; Yewdell, 2021Yewdell J.W. Antigenic drift: understanding COVID-19.Immunity. 2021; 54: 2681-2687https://doi.org/10.1016/j.immuni.2021.11.016Abstract Full Text Full Text PDF PubMed Scopus (12) Google Scholar), leading to the continuous emergence of variants with increased transmissibility or pathogenicity as well as resistance to monoclonal antibodies (mAbs) and vaccine-elicited antibodies (Corti et al., 2021Corti D. Purcell L.A. Snell G. Veesler D. Tackling COVID-19 with neutralizing monoclonal antibodies.Cell. 2021; 184: 3086-3108https://doi.org/10.1016/j.cell.2021.05.005Abstract Full Text Full Text PDF PubMed Scopus (121) Google Scholar; Davies et al., 2021Davies N.G. Abbott S. Barnard R.C. Jarvis C.I. Kucharski A.J. Munday J.D. Pearson C.A.B. Russell T.W. Tully D.C. Washburne A.D. et al.Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England.Science. 2021; 372https://doi.org/10.1126/science.abg3055Crossref PubMed Scopus (22) Google Scholar; Wang et al., 2021Wang P. Nair M.S. Liu L. Iketani S. Luo Y. Guo Y. Wang M. Yu J. Zhang B. Kwong P.D. et al.Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7.Nature. 2021; 593: 130-135https://doi.org/10.1038/s41586-021-03398-2Crossref PubMed Scopus (1035) Google Scholar; Wibmer et al., 2021Wibmer C.K. Ayres F. Hermanus T. Madzivhandila M. Kgagudi P. Oosthuysen B. Lambson B.E. de Oliveira T. Vermeulen M. van der Berg K. et al.SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma.Nat. Med. 2021; 27: 622-625https://doi.org/10.1038/s41591-021-01285-xCrossref PubMed Scopus (556) Google Scholar), highlighting the need for effective therapeutic and preventive measures with a broad spectrum of action.As a result of viral evolution, the initial SARS-CoV-2 lineages identified early during the pandemic in Wuhan, China (Zhou et al., 2020Zhou P. Yang X.L. Wang X.G. Hu B. Zhang L. Zhang W. Si H.R. Zhu Y. Li B. Huang C.L. et al.A pneumonia outbreak associated with a new coronavirus of probable bat origin.Nature. 2020; 579: 270-273https://doi.org/10.1038/s41586-020-2012-7Crossref PubMed Scopus (11468) Google Scholar), have progressively been replaced by several variants of concern, such as B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta) and, most recently, B.1.1.529 (Omicron). In particular, the latter is raising major concern worldwide because it has an unprecedented number of mutations, and it has rapidly spread across the globe (Bowen et al., 2022aBowen J.E. Sprouse K.R. Walls A.C. Mazzitelli I.G. Logue J.K. Franko N.M. Ahmed K. Shariq A. Cameroni E. Gori A. et al.Omicron BA.1 and BA.2 neutralizing activity elicited by a comprehensive panel of human vaccines.bioRxiv. 2022; (Preprint at)https://doi.org/10.1101/2022.03.15.484542Crossref Scopus (0) Google Scholar; Bruel et al., 2022Bruel T. Hadjadj J. Maes P. Planas D. Seve A. Staropoli I. Guivel-Benhassine F. Porrot F. Bolland W.H. Nguyen Y. et al.Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies.Nat. Med. 2022; 28: 1297-1302https://doi.org/10.1038/s41591-022-01792-5Crossref PubMed Scopus (71) Google Scholar; Greaney et al., 2021Greaney A.J. Starr T.N. Gilchuk P. Zost S.J. Binshtein E. Loes A.N. Hilton S.K. Huddleston J. Eguia R. Crawford K.H.D. et al.Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition.Cell Host Microbe. 2021; 29: 44-57.e9https://doi.org/10.1016/j.chom.2020.11.007Abstract Full Text Full Text PDF PubMed Scopus (445) Google Scholar; Iketani et al., 2022Iketani S. Liu L. Guo Y. Liu L. Chan J.F.W. Huang Y. Wang M. Luo Y. Yu J. Chu H. et al.Antibody evasion properties of SARS-CoV-2 Omicron sublineages.Nature. 2022; 604: 553-556https://doi.org/10.1038/s41586-022-04594-4Crossref PubMed Scopus (170) Google Scholar; Lusvarghi et al., 2021Lusvarghi S. Ayres F. Hermanus T. Madzivhandila M. Kgagudi P. Oosthuysen B. Lambson B.E. de Oliveira T. Vermeulen M. van der Berg K. et al.SARS-CoV-2 Omicron neutralization by therapeutic antibodies, convalescent sera, and post-mRNA vaccine booster.bioRxiv. 2021; (Preprint at)https://doi.org/10.1101/2021.12.22.473880Crossref Scopus (0) Google Scholar; Piccoli et al., 2020Piccoli L. Park Y.J. Tortorici M.A. Czudnochowski N. Walls A.C. Beltramello M. Silacci-Fregni C. Pinto D. Rosen L.E. Bowen J.E. et al.Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology.Cell. 2020; 183: 1024-1042.e21https://doi.org/10.1016/j.cell.2020.09.037Abstract Full Text Full Text PDF PubMed Scopus (570) Google Scholar; Takashita et al., 2022Takashita E. Kinoshita N. Yamayoshi S. Sakai-Tagawa Y. Fujisaki S. Ito M. Iwatsuki-Horimoto K. Chiba S. Halfmann P. Nagai H. et al.Efficacy of antibodies and antiviral drugs against covid-19 omicron variant.N. Engl. J. Med. 2022; 386: 995-998https://doi.org/10.1056/NEJMc2119407Crossref PubMed Scopus (101) Google Scholar; Yamasoba et al., 2022Yamasoba D. Kimura I. Nasser H. Morioka Y. Nao N. Ito J. Uriu K. Tsuda M. Zahradnik J. Shirakawa K. et al.Virological characteristics of SARS-CoV-2 BA.2 variant.bioRxiv. 2022; (Preprint at)https://doi.org/10.1101/2022.02.14.480335Crossref Scopus (0) Google Scholar; Yu et al., 2022Yu J. Collier A.Y. Rowe M. Mardas F. Ventura J.D. Wan H. Miller J. Powers O. Chung B. Siamatu M. et al.Comparable neutralization of the SARS-CoV-2 omicron BA.1 and BA.2 variants.medRxiv. 2022; (Preprint at)https://doi.org/10.1101/2022.02.06.22270533Crossref Scopus (0) Google Scholar; Zhou et al., 2022Zhou H. Tada T. Dcosta B.M. Landau N.R. Neutralization of SARS-CoV-2 omicron BA.2 by therapeutic monoclonal antibodies.bioRxiv. 2022; (Preprint at)https://doi.org/10.1101/2022.02.15.480166Crossref Scopus (0) Google Scholar). It comprises several distinct sublineages (World Health Organization, https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19-1-february-2022). The original Omicron variant, BA.1, was first documented in South Africa in November 2021 and became in a short time the predominant variant worldwide (World Health Organization, Classification of Omicron [B.1.1.529]: SARS-CoV-2 Variant of Concern [2021]). This variant has more than 30 mutations in the spike (S) protein (Elbe and Buckland-Merrett, 2017Elbe S. Buckland-Merrett G. Data, disease and diplomacy: GISAID's innovative contribution to global health.Global Chall. 2017; 1: 33-46https://doi.org/10.1002/gch2.1018Crossref PubMed Google Scholar), 15 of which are located within the receptor-binding domain (RBD), the main target of neutralizing antibodies (Greaney et al., 2021Greaney A.J. Starr T.N. Gilchuk P. Zost S.J. Binshtein E. Loes A.N. Hilton S.K. Huddleston J. Eguia R. Crawford K.H.D. et al.Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition.Cell Host Microbe. 2021; 29: 44-57.e9https://doi.org/10.1016/j.chom.2020.11.007Abstract Full Text Full Text PDF PubMed Scopus (445) Google Scholar; Piccoli et al., 2020Piccoli L. Park Y.J. Tortorici M.A. Czudnochowski N. Walls A.C. Beltramello M. Silacci-Fregni C. Pinto D. Rosen L.E. Bowen J.E. et al.Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology.Cell. 2020; 183: 1024-1042.e21https://doi.org/10.1016/j.cell.2020.09.037Abstract Full Text Full Text PDF PubMed Scopus (570) Google Scholar). Most of these mutations are unique to this variant. Consistent with this high degree of genetic heterogeneity, the Omicron sublineage BA.1 has reduced or abrogated sensitivity to neutralization by most mAbs, convalescent sera, and vaccine-elicited antibodies (Aggarwal et al., 2021Aggarwal A. Stella A.O. Walker G. Akerman A. Milogiannakis V. Brilot F. Amatayakul-Chantler S. Roth N. Coppola G. Schofield P. et al.SARS-CoV-2 Omicron: evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern.medRxiv. 2021; (Preprint at)https://doi.org/10.1101/2021.12.14.21267772Crossref Scopus (0) Google Scholar; Cameroni et al., 2022Cameroni E. Bowen J.E. Rosen L.E. Saliba C. Zepeda S.K. Culap K. Pinto D. VanBlargan L.A. De Marco A. di Iulio J. et al.Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift.Nature. 2022; 602: 664-670https://doi.org/10.1038/s41586-021-04386-2Crossref PubMed Scopus (316) Google Scholar; Cao et al., 2022aCao Y. Wang J. Jian F. Xiao T. Song W. Yisimayi A. Huang W. Li Q. Wang P. An R. et al.Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies.Nature. 2022; 602: 657-663https://doi.org/10.1038/s41586-021-04385-3Crossref PubMed Scopus (372) Google Scholar; Cele et al., 2022Cele S. Jackson L. Khoury D.S. Khan K. Moyo-Gwete T. Tegally H. San J.E. Cromer D. Scheepers C. Amoako D.G. et al.Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization.Nature. 2022; 602: 654-656https://doi.org/10.1038/s41586-021-04387-1Crossref PubMed Scopus (323) Google Scholar; Dejnirattisai et al., 2021Dejnirattisai W. Huo J. Zhou D. Zahradnik J. Supasa P. Liu C. Duyvesteyn H.M.E. Ginn H.M. Mentzer A.J. Tuekprakhon A. et al.Omicron-B.1.1.529 Leads to Widespread Escape from Neutralizing Antibody Responses.https://doi.org/10.1101/2021.12.03.471045Date: 2021Google Scholar; Doria-Rose et al., 2021Doria-Rose N.A. Shen X. Schmidt S.D. O'Dell S. McDanal C. Feng W. Tong J. Eaton A. Maglinao M. Tang H. et al.Booster of mRNA-1273 strengthens SARS-CoV-2 omicron neutralization.medRxiv. 2021; (Preprint at)https://doi.org/10.1101/2021.12.15.21267805Crossref Scopus (0) Google Scholar; Lusvarghi et al., 2021Lusvarghi S. Ayres F. Hermanus T. Madzivhandila M. Kgagudi P. Oosthuysen B. Lambson B.E. de Oliveira T. Vermeulen M. van der Berg K. et al.SARS-CoV-2 Omicron neutralization by therapeutic antibodies, convalescent sera, and post-mRNA vaccine booster.bioRxiv. 2021; (Preprint at)https://doi.org/10.1101/2021.12.22.473880Crossref Scopus (0) Google Scholar; Mannar et al., 2022Mannar D. Saville J.W. Zhu X. Srivastava S.S. Berezuk A.M. Tuttle K.S. Marquez A.C. Sekirov I. Subramaniam S. SARS-CoV-2 Omicron variant: antibody evasion and cryo-EM structure of spike protein-ACE2 complex.Science. 2022; 375: 760-764https://doi.org/10.1126/science.abn7760Crossref PubMed Scopus (143) Google Scholar; Planas et al., 2022Planas D. Saunders N. Maes P. Guivel-Benhassine F. Planchais C. Buchrieser J. Bolland W.H. Porrot F. Staropoli I. Lemoine F. et al.Considerable escape of SARS-CoV-2 Omicron to antibody neutralization.Nature. 2022; 602: 671-675https://doi.org/10.1038/s41586-021-04389-zCrossref PubMed Scopus (388) Google Scholar; Wilhelm et al., 2021Wilhelm A. Widera M. Grikscheit K. Toptan T. Schenk B. Pallas C. Metzler M. Kohmer N. Hoehl S. Helfritz F.A. et al.Reduced neutralization of SARS-CoV-2 omicron variant by vaccine sera and monoclonal antibodies.medRxiv. 2021; (Preprint at)https://doi.org/10.1101/2021.12.07.21267432Crossref Scopus (0) Google Scholar). As of March 2022, however, the BA.2 sublineage is rapidly replacing BA.1 to become the dominant variant in several areas of the world, including most European countries, India, Pakistan, the Philippines, New Zealand, and South Africa (CoVariants, Overview of Variants/Mutations, March 25, 2022; https://covariants.org). BA.2 shares 21 mutations with BA.1, but these two sublineages contain 8 and 13 unique mutations, respectively, in the spike protein. BA.2 has a significantly reduced sensitivity to neutralization by sera from convalescent patients or vaccinated individuals to a degree comparable to that reported for BA.1 (Bowen et al., 2022bBowen J.E. Addetia A. Dang H. Stewart C. Brown J.T. Sharkey W.K. Sprouse K.R. Walls A.C. Mazzitelli I.G. Logue J.K. et al.Science. 2022; : eabq0203https://doi.org/10.1126/science.abq0203Crossref Scopus (15) Google Scholar; Iketani et al., 2022Iketani S. Liu L. Guo Y. Liu L. Chan J.F.W. Huang Y. Wang M. Luo Y. Yu J. Chu H. et al.Antibody evasion properties of SARS-CoV-2 Omicron sublineages.Nature. 2022; 604: 553-556https://doi.org/10.1038/s41586-022-04594-4Crossref PubMed Scopus (170) Google Scholar; Yamasoba et al., 2022Yamasoba D. Kimura I. Nasser H. Morioka Y. Nao N. Ito J. Uriu K. Tsuda M. Zahradnik J. Shirakawa K. et al.Virological characteristics of SARS-CoV-2 BA.2 variant.bioRxiv. 2022; (Preprint at)https://doi.org/10.1101/2022.02.14.480335Crossref Scopus (0) Google Scholar; Yu et al., 2022Yu J. Collier A.Y. Rowe M. Mardas F. Ventura J.D. Wan H. Miller J. Powers O. Chung B. Siamatu M. et al.Comparable neutralization of the SARS-CoV-2 omicron BA.1 and BA.2 variants.medRxiv. 2022; (Preprint at)https://doi.org/10.1101/2022.02.06.22270533Crossref Scopus (0) Google Scholar). In addition, BA.2 has shown marked resistance to several mAbs tested, including sotrovimab, which was shown to retain activity against BA.1 (Bruel et al., 2022Bruel T. Hadjadj J. Maes P. Planas D. Seve A. Staropoli I. Guivel-Benhassine F. Porrot F. Bolland W.H. Nguyen Y. et al.Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies.Nat. Med. 2022; 28: 1297-1302https://doi.org/10.1038/s41591-022-01792-5Crossref PubMed Scopus (71) Google Scholar; Iketani et al., 2022Iketani S. Liu L. Guo Y. Liu L. Chan J.F.W. Huang Y. Wang M. Luo Y. Yu J. Chu H. et al.Antibody evasion properties of SARS-CoV-2 Omicron sublineages.Nature. 2022; 604: 553-556https://doi.org/10.1038/s41586-022-04594-4Crossref PubMed Scopus (170) Google Scholar; Takashita et al., 2022Takashita E. Kinoshita N. Yamayoshi S. Sakai-Tagawa Y. Fujisaki S. Ito M. Iwatsuki-Horimoto K. Chiba S. Halfmann P. Nagai H. et al.Efficacy of antibodies and antiviral drugs against covid-19 omicron variant.N. Engl. J. Med. 2022; 386: 995-998https://doi.org/10.1056/NEJMc2119407Crossref PubMed Scopus (101) Google Scholar; Zhou et al., 2022Zhou H. Tada T. Dcosta B.M. Landau N.R. Neutralization of SARS-CoV-2 omicron BA.2 by therapeutic monoclonal antibodies.bioRxiv. 2022; (Preprint at)https://doi.org/10.1101/2022.02.15.480166Crossref Scopus (0) Google Scholar). Thus, albeit related, these two sublineages exhibit different sensitivity to mAbs and vaccine-elicited antibodies. More recently, three additional Omicron sublineages have emerged, BA.2.12.1, BA.4, and BA.5, and they have rapidly replaced BA.1 and BA.2 worldwide, accounting for the vast majority of new infections globally (World Health Organization, https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19-20-july-2022). The BA.4 and BA.5 lineages have an identical spike protein and differ only outside the spike region (Tegally, 2022Tegally H. et al.Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa..Nature Meicine. 2022; 28: 1785-1790https://doi.org/10.1038/s41591-022-01911-2Crossref PubMed Scopus (34) Google Scholar). As seen with the initial Omicron variants, these newly emerged sublineages show even stronger escape from neutralizing antibodies elicited by both vaccination and natural infection (Bowen et al., 2022bBowen J.E. Addetia A. Dang H. Stewart C. Brown J.T. Sharkey W.K. Sprouse K.R. Walls A.C. Mazzitelli I.G. Logue J.K. et al.Science. 2022; : eabq0203https://doi.org/10.1126/science.abq0203Crossref Scopus (15) Google Scholar; Corbett et al., 2020bCorbett K.S. Flynn B. Foulds K.E. Francica J.R. Boyoglu-Barnum S. Werner A.P. Flach B. O'Connell S. Bock K.W. Minai M. et al.Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates.N. Engl. J. Med. 2020; 383: 1544-1555https://doi.org/10.1056/NEJMoa2024671Crossref PubMed Scopus (599) Google Scholar; Hachmann et al., 2022Hachmann N.P. Miller J. Collier A.R.Y. Ventura J.D. Yu J. Rowe M. Bondzie E.A. Powers O. Surve N. Hall K. Barouch D.H. Neutralization escape by SARS-CoV-2 omicron subvariants BA.2.12.1, BA.4, and BA.5.N. Engl. J. Med. 2022; 387: 86-88https://doi.org/10.1056/NEJMc2206576Crossref PubMed Scopus (48) Google Scholar; Qu et al., 2022Qu P. Faraone J. Evans J.P. Zou X. Zheng Y.M. Carlin C. Bednash J.S. Lozanski G. Mallampalli R.K. Saif L.J. et al.Neutralization of the SARS-CoV-2 omicron BA.4/5 and BA.2.12.1 subvariants.N. Engl. J. Med. 2022; 386: 2526-2528https://doi.org/10.1056/nejmc2206725Crossref PubMed Scopus (0) Google Scholar; Shrestha et al., 2022Shrestha L.B. Foster C. Rawlinson W. Tedla N. Bull R.A. Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: implications for immune escape and transmission.Rev. Med. Virol. 2022; 32: e2381https://doi.org/10.1002/rmv.2381Crossref PubMed Scopus (6) Google Scholar). The reduced effectiveness of current therapeutic antibodies and vaccines against Omicron subvariants, the rapid spread of these variants worldwide, and the limited rate of vaccination in developing countries highlight the urgent global need for the discovery of broadly neutralizing antibodies against SARS-CoV-2.In this study, we took advantage of our extensive experience in generating mAbs using combinatorial phage-display library technology (Chen et al., 2006Chen Z. Moayeri M. Zhou Y.H. Leppla S. Emerson S. Sebrell A. Yu F. Svitel J. Schuck P. St Claire M. Purcell R. Efficient neutralization of anthrax toxin by chimpanzee monoclonal antibodies against protective antigen.J. Infect. Dis. 2006; 193: 625-633https://doi.org/10.1086/500148Crossref PubMed Scopus (60) Google Scholar, Chen et al., 2018Chen Z. Diaz G. Pollicino T. Zhao H. Engle R.E. Schuck P. Shen C.H. Zamboni F. Long Z. Kabat J. et al.Role of humoral immunity against hepatitis B virus core antigen in the pathogenesis of acute liver failure.Proc. Natl. Acad. Sci. USA. 2018; 115: E11369-E11378https://doi.org/10.1073/pnas.1809028115Crossref PubMed Scopus (46) Google Scholar) to derive mAbs from convalescent COVID-19 donors with high neutralization titers. We report the isolation of ultrapotent mAbs that neutralize diverse and highly transmissible SARS-CoV-2 variants of concern, including the difficult-to-neutralize Beta and Omicron sublineages. To further validate our data, we compared side by side the neutralizing activity of our most potent mAbs with that of seven clinically approved mAbs, which confirmed the breadth and potency of our mAbs. Cryo-electron microscopy provided the structural basis for their broad reactivity and potency. Finally, we demonstrated the protective and therapeutic activity of our mAbs in a hamster preclinical model. Overall, this study uncovers potent mAbs, which may be utilized against both present and future SARS-CoV-2 variants of concern that will continue to emerge.ResultsGeneration and characterization of anti-SARS-CoV-2 monoclonal antibodies using phage-display libraries from COVID-19 convalescent patientsTo generate mAbs against the SARS-CoV-2 spike protein by using combinatorial phage-display libraries, peripheral blood samples were collected from 12 convalescent COVID-19 plasma donors with high neutralizing serum antibody titers against SARS-CoV-2 (De Giorgi et al., 2021De Giorgi V. West K.A. Henning A.N. Chen L.N. Holbrook M.R. Gross R. Liang J. Postnikova E. Trenbeath J. Pogue S. et al.Naturally acquired SARS-CoV-2 immunity persists for up to 11 Months following infection.J. Infect. Dis. 2021; 224: 1294-1304https://doi.org/10.1093/infdis/jiab295Crossref PubMed Scopus (26) Google Scholar) (Table S1). Total RNA was extracted from peripheral blood mononuclear cells (PBMC) and used for the construction of phage-display Fab libraries (Figure 1A ). A total of four phage-display Fab libraries, derived from either a single donor or multiple donors combined, were constructed, each consisting of 107 to 109 individual clones (Figure S1). Three sequential cycles of panning were carried out to enrich for specific clones using a stabilized trimeric spike protein (S-2P) derived from the original SARS-CoV-2 strain, Wuhan-Hu-1 (GenBank: MN908947; S protein sequence identical to that of the of USA/WA-1/2020 [WA-1]; GenBank: MN985325) (Wrapp et al., 2020Wrapp D. Wang N. Corbett K.S. Goldsmith J.A. Hsieh C.L. Abiona O. Graham B.S. McLellan J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.Science. 2020; 367: 1260-1263https://doi.org/10.1126/science.abb2507Crossref PubMed Scopus (61) Google Scholar). Subsequent screening of 672 individual clones by ELISA resulted in the identification of 538 clones that specifically bound to the S-2P protein. DNA sequencing identified 18 unique clones with distinct sequences. These clones were subcloned and expressed both as soluble Fabs and as complete IgG1 antibodies. The binding specificity of the cloned IgGs was confirmed by ELISA (Figure 1B). The binding affinity of the 18 Fabs for the soluble S-2P trimer was further assessed by surface plasmon resonance (SPR). Six Fabs showed either poor or no binding by SPR, while the remaining 12 exhibited high-affinity binding with equilibrium dissociation constants (KD) in the picomolar range for 10 and in the low nanomolar range for 2 (Figure S2; Table S2).Genetic analysis of V genes of all 18 mAbs indicated that the clones primarily used the variable heavy chain (VH) genes VH1-2 and VH1-69 and the variable light chain (VK) gene VK1-39 (Figures 1C and 1D; Table S3). The dominant use of these VH genes for SARS-CoV-2 S-specific antibodies is consistent with previous studies (Andreano et al., 2021Andreano E. Nicastri E. Paciello I. Pileri P. Manganaro N. Piccini G. Manenti A. Pantano E. Kabanova A. Troisi M. et al.Extremely potent human monoclonal antibodies from COVID-19 convalescent patients.Cell. 2021; 184: 1821-1835.e16https://doi.org/10.1016/j.cell.2021.02.035Abstract Full Text Full Text PDF PubMed Scopus (88) Google Scholar; Yuan et al., 2021Yuan M. Liu H. Wu N.C. Wilson I.A. Recognition of the SARS-CoV-2 receptor binding domain by neutralizing antibodies.Biochem. Biophys. Res. Commun. 2021; 538: 192-203https://doi.org/10.1016/j.bbrc.2020.10.012Crossref PubMed Scopus (96) Google Scholar). In comparison, the frequency of VH1-2 and VK1-39 gene usage only ranks 23 and 6, respectively, in the B cell repertoire of healthy individuals (Boyd et al., 2010Boyd S.D. Gaëta B.A. Jackson K.J. Fire A.Z. Marshall E.L. Merker J.D. Maniar J.M. Zhang L.N. Sahaf B. Jones C.D. et al.Individual variation in the germline Ig gene repertoire inferred from variable region gene rearrangements.J. Immunol. 2010; 184: 6986-6992https://doi.org/10.4049/jimmunol.1000445Crossref PubMed Scopus (191) Google Scholar; Prabakaran et al., 2012Prabakaran P. Chen W. Singarayan M.G. Stewart C.C. Streaker E. Feng Y. Dimitrov D.S. Expressed antibody repertoires in human cord blood cells: 454 sequencing and IMGT/HighV-QUEST analysis of germline gene usage, junctional diversity, and somatic mutations.Immunogenetics. 2012; 64: 337-350https://doi.org/10.1007/s00251-011-0595-8Crossref PubMed Scopus (48) Google Scholar), suggesting that certain germline genes are naturally favored for binding to the S protein of SARS-CoV-2. Notably, the selected antibodies had very limited somatic hypermutation (SHM) with a median frequency of 3.2% in VH and 1.6% in VL (Figure 1E). These findings are consistent with previous studies, which reported the isolation of anti-SARS-CoV-2 antibodies in nearly germline configuration (Kreye et al., 2020Kreye J. Reincke S.M. Kornau H.C. Sánchez-Sendin E. Corman V.M. Liu H. Yuan M. Wu N.C. Zhu X. Lee C.C.D. et al.A therapeutic non-self-reactive SARS-CoV-2 antibody protects from lung pathology in a COVID-19 hamster model.Cell. 2020; 183: 1058-1069.e19https://doi.org/10.1016/j.cell.2020.09.049Abstract Full Text Full Text PDF PubMed Scopus (176) Google Scholar; Liu et al., 2020Liu L. Wang P. Nair M.S. Yu J. Rapp M. Wang Q. Luo Y. Chan J.F.W. Sahi V. Figueroa A. et al.Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike.Nature. 2020; 584: 450-456https://doi.org/10.1038/s41586-020-2571-7Crossref PubMed Scopus (730) Google Scholar; Zost et al., 2020bZost S.J. Gilchuk P. Chen R.E. Case J.B. Reidy J.X. Trivette A. Nargi R.S. Sutton R.E. Suryadevara N. Chen E.C. et al.Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein.Nat. Med. 2020; 26: 1422-1427https://doi.org/10.1038/s41591-020-0998-xCrossref PubMed Scopus (229) Google Scholar). The length distribution of the complementarity-determining region 3 (CDR3) in both the heavy and light chains was in line with previous observations (Figures 1F and 1G), although we found an unusual bimodal distribution of CDRH3 length as opposed to the typical bell-shaped distribution in CDRL3 (Figures 1F and 1G). No correlation was found between SHM frequency in VH and binding affinity, further supporting the notion that certain germline antibody genes are naturally fit for targeting the S protein.Potent neutralization of diverse SARS-CoV-2 variants of concernThe neutralizing activity of 18 mAbs was evaluated using a pseudotype virus neutralization assay (Corbett et al., 2020aCorbett K.S. Edwards D.K. Leist S.R. Abiona O.M. Boyoglu-Barnum S. Gillespie R.A. Himansu S. Schäfer A. Ziwawo C.T. DiPiazza A.T. et al.SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness.Nature. 2020; 586: 567-571https://doi.org/10.1038/s41586-020-2622-0Crossref PubMed Scopus (573) Google Scholar). Eleven mAbs showed potent neutralizing activity against the original SARS-CoV-2 strain (WA-1), seven with half-maximal inhibitory concentration (IC50) values in the picomolar range, below 10 ng/mL (Figure 2A ), which is comparable to the potency of the best-in-class mAbs (Baum et al., 2020bBaum A. Fulton B.O. Wloga E. Copin R. Pascal K.E. Russo V. Giordano S. Lanza K. Negron N. Ni M. et al.Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies.Science. 2020; 369: 1014-1018https://doi.org/10.1126/science.abd0831Crossref PubMed Scopus (680) Google Scholar; Hansen et al., 2020Hansen J. Baum A. Pascal K.E. Russo V. Giordano S. Wloga E. Fulton B.O. Yan Y. Koon K. Patel K. et al.Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail.Science. 2020; 369: 1010-1014https://doi.org/10.1126/science.abd0827Crossref PubMed Scopus (627) Google Scholar; Jones et al., 2021Jones B.E. Brown-Augsburger P.L. Corbett K.S. Weste" @default.
- W4298148947 created "2022-10-01" @default.
- W4298148947 creator A5000543747 @default.
- W4298148947 creator A5002553313 @default.
- W4298148947 creator A5011221249 @default.
- W4298148947 creator A5012251819 @default.
- W4298148947 creator A5013017591 @default.
- W4298148947 creator A5017828574 @default.
- W4298148947 creator A5020251665 @default.
- W4298148947 creator A5025317946 @default.
- W4298148947 creator A5029360035 @default.
- W4298148947 creator A5030570143 @default.
- W4298148947 creator A5037753169 @default.
- W4298148947 creator A5043677118 @default.
- W4298148947 creator A5046813434 @default.
- W4298148947 creator A5049556755 @default.
- W4298148947 creator A5049994035 @default.
- W4298148947 creator A5051108938 @default.
- W4298148947 creator A5051190667 @default.
- W4298148947 creator A5053240125 @default.
- W4298148947 creator A5057228985 @default.
- W4298148947 creator A5057424411 @default.
- W4298148947 creator A5065854870 @default.
- W4298148947 creator A5071214646 @default.
- W4298148947 creator A5077162460 @default.
- W4298148947 creator A5090735591 @default.
- W4298148947 date "2022-11-01" @default.
- W4298148947 modified "2023-10-01" @default.
- W4298148947 title "Potent monoclonal antibodies neutralize Omicron sublineages and other SARS-CoV-2 variants" @default.
- W4298148947 cites W1529109939 @default.
- W4298148947 cites W1607133945 @default.
- W4298148947 cites W1873323484 @default.
- W4298148947 cites W2024142971 @default.
- W4298148947 cites W2038535315 @default.
- W4298148947 cites W2071378581 @default.
- W4298148947 cites W2086812659 @default.
- W4298148947 cites W2095796899 @default.
- W4298148947 cites W2104234755 @default.
- W4298148947 cites W2115122333 @default.
- W4298148947 cites W2123391493 @default.
- W4298148947 cites W2132629607 @default.
- W4298148947 cites W2133442602 @default.
- W4298148947 cites W2134216529 @default.
- W4298148947 cites W2144081223 @default.
- W4298148947 cites W2171157147 @default.
- W4298148947 cites W2256756668 @default.
- W4298148947 cites W2568765466 @default.
- W4298148947 cites W2578029714 @default.
- W4298148947 cites W2587970647 @default.
- W4298148947 cites W2593511418 @default.
- W4298148947 cites W2749679400 @default.
- W4298148947 cites W2791670278 @default.
- W4298148947 cites W2804822363 @default.
- W4298148947 cites W2901004936 @default.
- W4298148947 cites W2953320394 @default.
- W4298148947 cites W2973457155 @default.
- W4298148947 cites W3004280078 @default.
- W4298148947 cites W3007643904 @default.
- W4298148947 cites W3013800395 @default.
- W4298148947 cites W3032255042 @default.
- W4298148947 cites W3034202401 @default.
- W4298148947 cites W3034548712 @default.
- W4298148947 cites W3036887118 @default.
- W4298148947 cites W3040899749 @default.
- W4298148947 cites W3042323010 @default.
- W4298148947 cites W3044660350 @default.
- W4298148947 cites W3044914269 @default.
- W4298148947 cites W3046061621 @default.
- W4298148947 cites W3047091198 @default.
- W4298148947 cites W3086125063 @default.
- W4298148947 cites W3087410177 @default.
- W4298148947 cites W3092403777 @default.
- W4298148947 cites W3092501606 @default.
- W4298148947 cites W3092503590 @default.
- W4298148947 cites W3104722250 @default.
- W4298148947 cites W3123160442 @default.
- W4298148947 cites W3131871667 @default.
- W4298148947 cites W3133794453 @default.
- W4298148947 cites W3133980772 @default.
- W4298148947 cites W3134208712 @default.
- W4298148947 cites W3143907823 @default.
- W4298148947 cites W3160438579 @default.
- W4298148947 cites W3165032628 @default.
- W4298148947 cites W3166984695 @default.
- W4298148947 cites W3179071715 @default.
- W4298148947 cites W3179152893 @default.
- W4298148947 cites W3198285117 @default.
- W4298148947 cites W3201474993 @default.
- W4298148947 cites W3203599784 @default.
- W4298148947 cites W4200243109 @default.
- W4298148947 cites W4200601232 @default.
- W4298148947 cites W4205331651 @default.
- W4298148947 cites W4206153788 @default.
- W4298148947 cites W4212907414 @default.
- W4298148947 cites W4220673385 @default.
- W4298148947 cites W4220689791 @default.
- W4298148947 cites W4220807057 @default.
- W4298148947 cites W4220886953 @default.