Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298203177> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4298203177 abstract "Given a finite irreducible Coxeter group $W$, a positive integer $d$, and types $T_1,T_2,...,T_d$ (in the sense of the classification of finite Coxeter groups), we compute the number of decompositions $c=si_1si_2 cdotssi_d$ of a Coxeter element $c$ of $W$, such that $si_i$ is a Coxeter element in a subgroup of type $T_i$ in $W$, $i=1,2,...,d$, and such that the factorisation is minimal in the sense that the sum of the ranks of the $T_i$'s, $i=1,2,...,d$, equals the rank of $W$. For the exceptional types, these decomposition numbers have been computed by the first author. The type $A_n$ decomposition numbers have been computed by Goulden and Jackson, albeit using a somewhat different language. We explain how to extract the type $B_n$ decomposition numbers from results of B'ona, Bousquet, Labelle and Leroux on map enumeration. Our formula for the type $D_n$ decomposition numbers is new. These results are then used to determine, for a fixed positive integer $l$ and fixed integers $r_1le r_2le ...le r_l$, the number of multi-chains $pi_1le pi_2le ...le pi_l$ in Armstrong's generalised non-crossing partitions poset, where the poset rank of $pi_i$ equals $r_i$, and where the block structure of $pi_1$ is prescribed. We demonstrate that this result implies all known enumerative results on ordinary and generalised non-crossing partitions via appropriate summations. Surprisingly, this result on multi-chain enumeration is new even for the original non-crossing partitions of Kreweras. Moreover, the result allows one to solve the problem of rank-selected chain enumeration in the type $D_n$ generalised non-crossing partitions poset, which, in turn, leads to a proof of Armstrong's $F=M$ Conjecture in type $D_n$." @default.
- W4298203177 created "2022-10-01" @default.
- W4298203177 creator A5030793051 @default.
- W4298203177 creator A5040427357 @default.
- W4298203177 date "2007-04-02" @default.
- W4298203177 modified "2023-09-28" @default.
- W4298203177 title "Decomposition numbers for finite Coxeter groups and generalised non-crossing partitions" @default.
- W4298203177 doi "https://doi.org/10.48550/arxiv.0704.0199" @default.
- W4298203177 hasPublicationYear "2007" @default.
- W4298203177 type Work @default.
- W4298203177 citedByCount "0" @default.
- W4298203177 crossrefType "posted-content" @default.
- W4298203177 hasAuthorship W4298203177A5030793051 @default.
- W4298203177 hasAuthorship W4298203177A5040427357 @default.
- W4298203177 hasBestOaLocation W42982031771 @default.
- W4298203177 hasConcept C11413529 @default.
- W4298203177 hasConcept C114614502 @default.
- W4298203177 hasConcept C128622974 @default.
- W4298203177 hasConcept C140860697 @default.
- W4298203177 hasConcept C143669375 @default.
- W4298203177 hasConcept C156340839 @default.
- W4298203177 hasConcept C164226766 @default.
- W4298203177 hasConcept C180645754 @default.
- W4298203177 hasConcept C187834632 @default.
- W4298203177 hasConcept C18903297 @default.
- W4298203177 hasConcept C199360897 @default.
- W4298203177 hasConcept C201064014 @default.
- W4298203177 hasConcept C2777299769 @default.
- W4298203177 hasConcept C33923547 @default.
- W4298203177 hasConcept C37486056 @default.
- W4298203177 hasConcept C41008148 @default.
- W4298203177 hasConcept C48495023 @default.
- W4298203177 hasConcept C86803240 @default.
- W4298203177 hasConcept C97137487 @default.
- W4298203177 hasConceptScore W4298203177C11413529 @default.
- W4298203177 hasConceptScore W4298203177C114614502 @default.
- W4298203177 hasConceptScore W4298203177C128622974 @default.
- W4298203177 hasConceptScore W4298203177C140860697 @default.
- W4298203177 hasConceptScore W4298203177C143669375 @default.
- W4298203177 hasConceptScore W4298203177C156340839 @default.
- W4298203177 hasConceptScore W4298203177C164226766 @default.
- W4298203177 hasConceptScore W4298203177C180645754 @default.
- W4298203177 hasConceptScore W4298203177C187834632 @default.
- W4298203177 hasConceptScore W4298203177C18903297 @default.
- W4298203177 hasConceptScore W4298203177C199360897 @default.
- W4298203177 hasConceptScore W4298203177C201064014 @default.
- W4298203177 hasConceptScore W4298203177C2777299769 @default.
- W4298203177 hasConceptScore W4298203177C33923547 @default.
- W4298203177 hasConceptScore W4298203177C37486056 @default.
- W4298203177 hasConceptScore W4298203177C41008148 @default.
- W4298203177 hasConceptScore W4298203177C48495023 @default.
- W4298203177 hasConceptScore W4298203177C86803240 @default.
- W4298203177 hasConceptScore W4298203177C97137487 @default.
- W4298203177 hasLocation W42982031771 @default.
- W4298203177 hasLocation W42982031772 @default.
- W4298203177 hasLocation W42982031773 @default.
- W4298203177 hasOpenAccess W4298203177 @default.
- W4298203177 hasPrimaryLocation W42982031771 @default.
- W4298203177 hasRelatedWork W2016579518 @default.
- W4298203177 hasRelatedWork W2179621644 @default.
- W4298203177 hasRelatedWork W2280249789 @default.
- W4298203177 hasRelatedWork W2952861003 @default.
- W4298203177 hasRelatedWork W2962683402 @default.
- W4298203177 hasRelatedWork W2963299623 @default.
- W4298203177 hasRelatedWork W3106088217 @default.
- W4298203177 hasRelatedWork W4300092001 @default.
- W4298203177 hasRelatedWork W4302030858 @default.
- W4298203177 hasRelatedWork W4309934529 @default.
- W4298203177 isParatext "false" @default.
- W4298203177 isRetracted "false" @default.
- W4298203177 workType "article" @default.