Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298220462> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4298220462 abstract "This paper is on homotopy classification of maps of (n+1)-dimensional manifolds into the n-dimensional sphere. For a continuous map f of an (n+1)-manifold into the n-sphere define the degree deg f to be the class dual to f^*[S^n], where [S^n] is the fundamental class. We present a short and direct proof of the following specific case of the Pontryagin-Steenrod-Wu theorem: Theorem. Let M be a connected orientable closed smooth (n+1)-manifold, n>2. Then the map deg:pi^n(M)to H_1(M;Z) is 1-to-1 (i.e., bijective), if the product w_2(M) x r_2 H_2(M;Z) is nonzero, where r_2 is the mod2 reduction; 2-to-1 (i.e., each element of H_1(M;Z) has exactly 2 preimages) - otherwise. The proof is based on the Pontryagin-Thom construction and a geometric definition of the Stiefel-Whitney classes w_2(M)." @default.
- W4298220462 created "2022-10-01" @default.
- W4298220462 creator A5004774604 @default.
- W4298220462 creator A5023842910 @default.
- W4298220462 creator A5069927343 @default.
- W4298220462 date "2008-08-08" @default.
- W4298220462 modified "2023-10-16" @default.
- W4298220462 title "On the Pontryagin-Steenrod-Wu theorem" @default.
- W4298220462 doi "https://doi.org/10.48550/arxiv.0808.1209" @default.
- W4298220462 hasPublicationYear "2008" @default.
- W4298220462 type Work @default.
- W4298220462 citedByCount "0" @default.
- W4298220462 crossrefType "posted-content" @default.
- W4298220462 hasAuthorship W4298220462A5004774604 @default.
- W4298220462 hasAuthorship W4298220462A5023842910 @default.
- W4298220462 hasAuthorship W4298220462A5069927343 @default.
- W4298220462 hasBestOaLocation W42982204621 @default.
- W4298220462 hasConcept C114614502 @default.
- W4298220462 hasConcept C126255220 @default.
- W4298220462 hasConcept C127413603 @default.
- W4298220462 hasConcept C141803461 @default.
- W4298220462 hasConcept C202444582 @default.
- W4298220462 hasConcept C24424167 @default.
- W4298220462 hasConcept C2524010 @default.
- W4298220462 hasConcept C33923547 @default.
- W4298220462 hasConcept C529865628 @default.
- W4298220462 hasConcept C5961521 @default.
- W4298220462 hasConcept C78519656 @default.
- W4298220462 hasConcept C90673727 @default.
- W4298220462 hasConcept C91575142 @default.
- W4298220462 hasConceptScore W4298220462C114614502 @default.
- W4298220462 hasConceptScore W4298220462C126255220 @default.
- W4298220462 hasConceptScore W4298220462C127413603 @default.
- W4298220462 hasConceptScore W4298220462C141803461 @default.
- W4298220462 hasConceptScore W4298220462C202444582 @default.
- W4298220462 hasConceptScore W4298220462C24424167 @default.
- W4298220462 hasConceptScore W4298220462C2524010 @default.
- W4298220462 hasConceptScore W4298220462C33923547 @default.
- W4298220462 hasConceptScore W4298220462C529865628 @default.
- W4298220462 hasConceptScore W4298220462C5961521 @default.
- W4298220462 hasConceptScore W4298220462C78519656 @default.
- W4298220462 hasConceptScore W4298220462C90673727 @default.
- W4298220462 hasConceptScore W4298220462C91575142 @default.
- W4298220462 hasLocation W42982204621 @default.
- W4298220462 hasLocation W42982204622 @default.
- W4298220462 hasOpenAccess W4298220462 @default.
- W4298220462 hasPrimaryLocation W42982204621 @default.
- W4298220462 hasRelatedWork W1508013399 @default.
- W4298220462 hasRelatedWork W2027277382 @default.
- W4298220462 hasRelatedWork W2279732055 @default.
- W4298220462 hasRelatedWork W2765424191 @default.
- W4298220462 hasRelatedWork W2952259524 @default.
- W4298220462 hasRelatedWork W2995857455 @default.
- W4298220462 hasRelatedWork W2998840281 @default.
- W4298220462 hasRelatedWork W4287020903 @default.
- W4298220462 hasRelatedWork W4288805235 @default.
- W4298220462 hasRelatedWork W4302399754 @default.
- W4298220462 isParatext "false" @default.
- W4298220462 isRetracted "false" @default.
- W4298220462 workType "article" @default.